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ABSTRACT

In many online networks, nodes are partitioned into cate-

gories (e.g., countries or universities in OSNs), which natu-
rally defines a weighted category graph i.e., a coarse-grained
version of the underlying network. In this paper, we show
how to efficiently estimate the category graph from a prob-
ability sample of nodes. We prove consistency of our es-
timators and evaluate their efficiency via simulation. We
also apply our methodology to a sample of Facebook users
to obtain a number of category graphs, such as the college
friendship graph and the country friendship graph. We share
and visualize the resulting data at www.geosocialmap.com.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques

General Terms

Measurement, Algorithms

Keywords

Online Social Networks, Coarse-Grained Topology, Estima-
tors, Induced Subgraph Sampling, Star sampling, Facebook.

1. INTRODUCTION
Many large online networks, such as online social networks

(OSNs) and the World Wide Web (WWW), are currently
studied via sampling techniques. Sampling becomes neces-
sary due to the sheer size of these networks and/or access
limitations, which make it infeasible to collect (and, in some
cases, to analyze) these networks in their entirety.

Most principled graph sampling methods to date have fo-
cused on collecting a probability sample of nodes [4,5,9,13,
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Figure 1: Illustration. Three node categories in the
original graph G define a three-node weighted cate-
gory graph GC.

22,24,26]. Based on such a sample, one can efficiently es-
timate many local graph properties, such as node attribute
frequency, degree distributions, or clustering coefficients [11,
24]. However, these features reveal little about the global
properties of the underlying graph.

In this paper, we show how a particular aspect of global
network structure, namely coarse-grained topology, can be
efficiently estimated from a probability sample of nodes.
Specifically, we note that nodes in many online graphs be-
long to categories, explicitly declared by users or clearly
determined by observable characteristics. For example, in
Facebook, users can officially declare the college or work-
place with which they are affiliated, or a country/city in
which they live. Similarly, in the WWW, all nodes can be
categorized by their domain names, and the users of Inter-
net radio sites like Last.FM may be grouped on the basis of
listening behavior. This potentially allows us to build and
study category graphs, in which each node corresponds to
a category and edge weights reflect the frequency of edges
between category members in the original graph.

For example, in Fig. 1, nodes in graph G belong in one of
three categories (white, gray, and black), which defines the
three-node weighted category graph GC. The edge weight
w(◦, •) in GC is the probability that a black and a white
node, randomly chosen from G, are connected in G.

The contribution of this paper lies in developing and eval-
uating several efficient estimators for two properties of the
category graph, namely the size of the categories and the
edge weights. These estimators take as input a (uniform or
non-uniform) probability sample of nodes, measured via one
of two strategies: induced subgraph sampling [11], in which
we have information regarding only the sampled nodes; and



star sampling [11], in which we also have category infor-
mation about the neighbors of sampled nodes. We show
that our estimators have good asymptotic properties (consis-
tency, and hence asymptotic unbiasedness) and we evaluate
their efficiency via simulation. Finally, as a practical illustra-
tion of our approach, we estimate several Facebook category
graphs, such as the college-to-college and country-to-country
friendship graphs.1 These results are made available along
with a highly-customizable, web-based visualization service
at www.geosocialmap.com.

Our methodology has potential applications not only for
descriptive and visualization purposes, but also for model-
based analysis. For instance, given the estimated category
edge weights, one can create models and test hypotheses
on how category features (rank and type of a university,
language and religion of a country, geographical distance)
affect the inter-category interaction rates.

2. RELATED WORK

Node sampling in graphs. In some cases, it is possible to
sample nodes uniformly and independently [5,11]. However,
most state-of-the-art node sampling techniques use variants
of random walks (RW), such as the classic RW [5,8,19,22,25],
metropolized RW (MHRW) [5,22,26], multiple dependent
RW [24], multigraph RW [4], RW with jumps [9,18], and
weighted RW [13]. Based on the resulting (uniform or non-
uniform) sample of nodes, there exist principled methods to
estimate local graph properties (degree distribution, assor-
tativity and clustering coefficient) [2,5,6,17,22,24].

Category graphs The use of partitions to produce reduced-
form versions of larger networks has an extensive history in
the social network literature, primarily under the label of
block modeling [30]. There, categories correspond to posi-
tions, our category graph to the reduced graph or block im-
age, and our edge weights to block densities or mixing rates.
Given the full knowledge, one can easily create a category
graph (see Section 3.2 and [1]). In contrast, our contribution
lies in estimating the category graph from a sample of nodes.

Community Structure Sampling A related line of re-
search is in subsampling a large fully known graph in order
to significantly shrink its size while keeping the resulting
subgraph “similar” to the original one [18,20]. In particu-
lar, [20] considered the community structure as a measure
of similarity that should be preserved. Our work is fun-
damentally different, because here (i) the original graph is
not known, (ii) the nodes are labeled, and (iii) the sampled
subgraph may be arbitrary different from the original graph.

3. NOTATIONANDPROBLEMSTATEMENT

3.1 Basic graph G

We consider an undirected graph G = (V,E), with N=
|V | nodes and |E| edges. Denote by deg(v) the degree of
node v ∈ V , and by vol(A) =

∑
v∈A

deg(v) the volume of a
set of nodes A ⊆ V . We will often use

fA =
|A|

|V |
and f

vol

A =
vol(A)

vol(V )
(1)

1Just after the submission of this paper, Facebook released
a similar study of the “friendship ties between countries” [1]
that drew significant attention.

to denote the relative size of A in terms of number of nodes
and volume, respectively.

3.2 Category graph GC

The nodes V are partitioned into a set C of categories,
i.e., that

⋃
C∈C=V . We are interested in the category graph

GC = (C, EC), with node set given by the categories of G.
For two different categories A,B ∈ C, A 6= B, denote by
EA,B ⊂ E the corresponding edge-cut in G, i.e.,

EA,B = {{u, v} ∈ E : u ∈ A and v ∈ B}.

If |EA,B| > 0 then we draw an edge {A,B} between A and
B in GC. We show an example of a category graph in Fig. 1.

The way we defined category graph GC so far, prevents
self-loops, but potentially allows for edge weights. The weight
w(A,B) of edge {A,B} can be defined in a number of ways.
For instance, one could trivially set it always equal to 1.
In some settings, e.g., statistical modeling, the number of
inter-category edges, w(A,B)= |EA,B|, is a good choice. For
many purposes, however, it is useful to have a notion of edge
weight that adjusts for category size, e.g.,

w(A,B) =
|EA,B |

|A| · |B|
. (2)

This definition has an intuitive interpretation. Because |A| ·
|B| is the size of the maximum possible edge-cut from A

to B, w(A,B) is equal to the probability that a uniformly
selected member of A is connected to a uniformly selected
member of B. We give an example of these weights w(A,B)
in Fig. 1.

3.3 Goal: Estimate GC through sampling
Given the full knowledge of graph G, it is trivial to con-

struct the category graph. In many cases, however, the
knowledge of the full graph G is not available, rendering
exact computation of Eq.(2) infeasible. For instance, down-
loading the entire Facebook social graph via HTML scrap-
ing would require downloading and processing about 115
terabytes of uncompressed HTML data [6], which is rather
prohibitive in practice (but can be easily done from inside
Facebook [1]).

In contrast, it is often possible to collect a sample S ⊆ V

of nodes of G. The challenge, then, and the main goal of this
paper is to estimate the category graph GC (i.e., its nodes
C and edge weights Eq.(2)) based on the sample S.

3.4 Sampling techniques
We consider only the sampling techniques where nodes are

sampled with replacement (we permit S to contain multiple
copies of the same node)2, as follows.

Uniform Independence Sampling (UIS) samples nodes
with equal probabilities.

Weighted Independence Sampling (WIS) samples v

with probability proportional to a known weight w(v).

Simple Random Walk (RW) [19] selects the next-hop
node v uniformly at random among the neighbors of the
current node u. On a connected and aperiodic graph, RW
samples node v with probability linearly proportional to its
degree deg(v).

2The without-replacement approaches (i.e., BFS, DFS) are
much more difficult to analyze [15,16].



(a) Induced subgraph sampling (b) Star sampling
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Figure 2: Observed categories and edges, under two
studied scenarios.

Weighted Random Walk (WRW) is RW on a weighted
graph [3]. In our simulations and implementation, we use
“Stratified WRW,” or S-WRW [13], i.e., a version of WRW
that increases the sampling efficiency by over-sampling graph
regions relevant to the measurement objective and under-
sampling the irrelevant ones.

3.5 Observed categories and edges
When sampling a node v, we obviously learn its category.

However, in some cases we can also learn the categories of v’s
neighbors [11]. We therefore distinguish two graph sampling
designs: induced sampling and star sampling (see Fig. 2), as
follows.

Induced Subgraph Sampling learns the categories of the
sampled nodes only, as shown in Fig. 2(a).

Star Sampling [5,11,13] reveals the categories (but not nec-
essarily the degree) of all neighbors of a sampled node u ∈ S,
as shown in Fig. 2(b).

4. ESTIMATION
In this section, we provide design-based estimators for cat-

egory sizes and category graph edge weights, given a uniform
independence (UIS) sample from the node set. All estima-
tors shown in this section and in Section 4.2 are consistent;
proofs are provided in our technical report [14].

4.1 Uniform Sampling (UIS)

4.1.1 Induced subgraph sampling

The size |A| of category A can be estimated by multiplying
by N the fraction of nodes sampled in A, i.e.,

|Â| = N ·
|SA|

|S|
, (3)

where SA = {v ∈ S : v ∈ A} is a multiset containing all
samples from category A.

To estimate the edge weights, recall from Eq.(2) that w(A,B)
is obtained by dividing the number of edges between A and
B by the maximal possible number of such edges. Analo-
gously, under induced subgraph sampling, we observe∑

a∈SA

∑
b∈SB

1{{a,b}∈E} edges between A and B, out of

the maximal number |SA| · |SB | we could possibly observe,
leading to the estimator

ŵ(A,B) =

∑

a∈SA

∑

b∈SB

1{{a,b}∈E}

|SA| · |SB |
. (4)

Note that when S contains the same node multiple times,
we count any corresponding sampled edges multiple times
as well.

4.1.2 Star sampling

Although not obvious at first blush, star sampling gives
us an alternative way to estimate category sizes. Denote by

kA =
1

|A|

∑

v∈A

deg(v) and kV =
1

|V |

∑

v∈V

deg(v)

the average node degree in category A and in the entire
graph, G, respectively. Because vol(A) = |A| · kA, we can
re-write the relative volume fvol

A of category A (see Eq.(1))
as

f
vol

A =
vol(A)

vol(V )
=

|A| · kA
|V | · kV

=
|A| · kA
N · kV

.

This allows us to estimate the size |A| of category A as

|Â| = N · f̂vol

A ·
k̂V

k̂A
. (5)

This formula may seem less attractive than Eq.(3), because
we now have to estimate three different numbers. However,
kV and kA can be easily estimated, respectively by

k̂V =

∑
v∈S

deg(v)

|S|
and k̂A =

∑
v∈SA

deg(v)

|SA|
. (6)

Moreover, we have proposed in [13] an efficient star-based
estimator of fvol

A , i.e.,

f̂
vol

A =
1

vol(S)

∑

s∈S

∑

v∈N (s)

1{v∈A}. (7)

By plugging Eq.(6) and Eq.(7) into Eq.(5), we obtain a com-
plex yet powerful star-based estimator of size |A|.

To estimate the edge weights under star sampling, note
that on sampling node a ∈ A we observe the set Ea,B ⊂ E

of all edges between a and category B 6= A. So we observe
|Ea,B| edges out of a potential |B| edges between a and B.
If we consider all nodes SA we sampled from A, we observe∑

a∈SA
|Ea,B| out of a potential |SA| · |B| edges. The same

applies to nodes SB sampled in B and their neighbors in
A. Consequently, we can estimate the category graph edge
weight w(A,B) by dividing the total number of edges we
observed between A and B by our estimate of the maximal
number we could potentially observe, i.e.,

ŵ(A,B) =

∑

a∈SA

|Ea,B| +
∑

b∈SB

|Eb,A|

|SA| · |B̂| + |SB | · |Â|
. (8)

Note that because we usually do not know the real sizes of

A and B, Eq.(8) uses their estimators |Â| and |B̂|. We can
employ either Eq.(3) or Eq.(5), as needed.

4.2 Non-Uniform Sampling (WIS)
The estimators derived in Section 4.1 hold under UIS,

where every node v ∈ V is sampled with the same probabil-
ity. Such a sampling design is rarely feasible in practice. A



more common scenario is non-uniform probability sampling,
where every node v ∈ V is sampled with probability propor-
tional to a known weight w(v). Indeed, this is the case for
WIS, RW, S-WRW and other principled walk-based sam-
pling methods, provided that samples have adequately con-
verged [5]. Non-uniform samples are by definition biased to-
wards nodes of higher weight (typically degree), which may
dramatically distort the estimation results if used without
correcting for sampling probabilities [6].

Fortunately, a weighted sample can be unbiased using the
Hansen-Hurwitz estimator [7] as shown e.g., in [22,25,29].
Indeed, let every node v ∈ V carry a value x(v). We can
estimate the population total xtot =

∑
v
x(v) by

x̂tot =
1

n

∑

v∈S

x(v)

π(v)
, (9)

where π(v) is the sampling probability of node v.
In practice, we usually know π(v), and thus x̂tot, only up

to a constant, i.e., we know the (non-normalized) weights w(v),
w(v) ∼ π(v). Fortunately, we can often address this prob-
lem by estimating the ratio of two totals, which makes the
unknown constants cancel out. We will use this approach
below.

4.2.1 Induced subgraph sampling

Following Eq.(9), we can estimate |SA| by setting x(v) ≡
1{v∈A}. This yields

|ŜA| =
1

n

∑

v∈S

1{v∈A}

π(v)
=

1

n

∑

v∈SA

1

π(v)
.

Analogously, |Ŝ| = 1
n

∑
v∈S

1
π(v)

. Consequently, we can

rewrite Eq.(3) as

|Â| = N

∑
v∈SA

1
π(v)∑

v∈S
1

π(v)

= N

∑
v∈SA

1
w(v)∑

v∈S
1

w(v)

= N
w-1(SA)

w-1(S)
(10)

where w-1(X) =
∑

v∈X
1

w(v)
is the ‘re-weighted size’ of mul-

tiset X ⊂ V .
Now, to estimate the edge weights, note that in the nu-

merator of Eq.(4), we have a sum over node pairs, rather
than single nodes. In this case, Hansen-Hurwitz estimator
divides every component by the product of weights of the
two involved nodes [11], which yields

ŵ(A,B) =

∑

a∈SA

∑

b∈SB

1{{a,b}∈E}

w(a) · w(b)

w-1(SA) · w-1(SB)
. (11)

4.2.2 Star sampling

As in Section 4.1.2, we estimate the size of a category A

using Eq.(5), i.e.,

|Â| = N · f̂vol

A ·
k̂V

k̂A
. (12)

However, now, the terms f̂vol

A , k̂V and k̂A must be calcu-
lated taking into account the sampling weights. Indeed, the

weighted version of f̂vol

A is (after [13])

f̂
vol

A =
1

∑

s∈S

deg(s)

w(s)

·
∑

s∈S



 1

w(s)

∑

v∈N (s)

1{v∈A}



 . (13)

Similarly, the estimators Eq.(6) of kV and kA can be rewrit-
ten respectively by

k̂V =

∑
v∈S

deg(v)
w(v)

w-1(S)
and k̂A =

∑
v∈SA

deg(v)
w(v)

w-1(SA)
. (14)

Finally, Eq.(8) becomes

ŵ(A,B) =

∑

a∈SA

|Ea,B|

w(a)
+

∑

b∈SB

|Eb,A|

w(b)

w-1(SA) · |B̂| + w-1(SB) · |Â|
. (15)

Again, we have two size estimators Eq.(10) and Eq.(12) to

choose from to plug into |Â| and |B̂|.

4.3 Sampling via crawling
In many online networks the only feasible sampling ap-

proach is via crawling [5]. Such techniques result in non-
uniform sampling probabilities, and, consequently, sampling
weights. For example, under RW the sampling weights con-
verge asymptotically to w(v) = deg(v) [19]. Using these
weights in conjunction with the WIS estimators above al-
lows for consistent estimation of coarse-grained topology
from random walk samples.

4.4 Population size (N)
In our estimation of category sizes, the population size N=

|V | is required. In some cases N is known (e.g., in an OSN
context, it may be published by the service provider), but
in general this is not the case. Fortunately, where N is
not available, we can turn to estimation [10,12,23]. For
instance, [10] proposes an approach based on a “reversed
coupon collector” problem, which can be used with both
uniform and non-uniform sampling, and [12] significantly
improves over [10].

Finally, we note that N is only necessary where absolute
values of category sizes are required. Specifically, all edge
weights and category sizes can be estimated up to a constant
of proportionality without knowing the size of the total pop-
ulation. Thus, if we are interested in ratios of category sizes
and/or edge weights (e.g., the relative weight of the A,B

connection versus the A,C connection in GC), then N can
be ignored (and replaced by an arbitrary constant in the
above equations).

5. SIMULATION RESULTS

5.1 Objective and performance metrics
In this section, we evaluate our methodology. We use the

Normalized Root Mean Square Error (NRMSE) to assess the
error of our estimators:

NRMSE(x̂) =

√
E [(x̂− x)2]

x
, (16)

where x is the real value and x̂ is the estimate.

5.2 Datasets
We consider two fully known OSN topologies:3 Texas

[27] (36K nodes, 1590K edges), and New Orleans [28] (63K
nodes, 816K edges). We define as categories the 50 largest

3For the sake of space, an extensive study of our method-
ology on both synthetic and (other) real-life graphs can be
found in [14].
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Figure 3: Simulations on real-life graphs. We esti-
mate category sizes (top) and category edge weights
(bottom), using induced subgraph sampling (circles)
and star sampling (stars).

communities in the graph, found by a standard community
finding algorithm based on eigenvalues [21]. All the remain-
ing smaller communities (if any) are then grouped together
as the 51st category. Next, we sample the resulting graphs
by three different sampling methods: UIS, RW and S-WRW.
Under S-WRW [13], we use equal category weights for all
categories.

5.3 Results
We show the results in Fig. 3. First of all, in all cases the

error approaches 0 with the sample size, which confirms that
our estimators are consistent (asymptotically unbiased), as
we show in [14].

The efficiency of the category size estimators (Fig. 3, top),
Eq.(3) and Eq.(5), is comparable. Under UIS, induced esti-
mators slightly outperform the star-based ones; under RW
and S-WRW the latter usually perform better. This is be-
cause both RW and S-WRW visit high-degree nodes more
often, and thus their star samples inherently collect and
exploit more information about neighbor categories, which
translates to a better performance.

While there is no clear winner in the category size estima-
tion, in the category edge weight estimation, star sampling
consistently and significantly outperforms induced sampling.
Indeed, in Fig. 3(bottom), the induced estimators often need
5-10 times more samples to achieve the same accuracy as star
estimators.

Finally, among the sampling techniques, UIS clearly per-
forms best. Not surprisingly, direct independence sampling
should be preferred whenever available. In the more practi-
cal scenarios, however, we are limited to exploration-based
techniques. In our simulations, S-WRW is consistently bet-
ter than RW. Note that because all categories (and thus
nodes) are relevant, this advantage of S-WRW is purely due
to stratification [13].

(a) (b)
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Figure 4: Results for 100 college networks: category
size estimation (a), and edge weight estimation (b).

Figure 5: 100 strongest edges of the college-to-
college friendship graph for top US colleges, as
ranked by the “US News World Report ’09”.

6. FACEBOOK CATEGORY GRAPHS
In this section, we use the estimators developed in this paper
to infer several category graphs from Facebook.

6.1 Data sets
About 3.5% of Facebook users openly declare the col-

lege/university they attend. In our previous work [13], we
collected samples of Facebook users using two methods: (i) RW
(1M users), and (ii) S-WRW (tuned to oversample college
students, 1M users). We discovered more than 10K colleges.

These datasets were collected using HTML scraping, which
allowed us to collect for each user v not only v’s category,
but also the list of v’s friends together with their cate-
gories. In other words, we collected a star sample of Face-
book users, with no additional cost. By discarding the in-
formation about v’s nodes, we can also use the induced sub-
graph estimators, for comparison.

6.2 Results
We present our results in Fig. 4. To calculate NRMSE we

use as ground truth the average of estimation over all sam-
ples we collected.

In the estimation of Facebook category sizes (Fig. 4(a)),
S-WRW outperforms RW, and the star version is better than
induced. This is in agreement with our observations made
in Section 5.

The estimation of category edge weights in Facebook, shown
in Fig. 4(b), also confirms the observations in the simula-
tions of Section 5. Indeed, all star estimators dramatically
outperform their induced counterparts.



6.3 Geosocial visualization
Finally, we developed a highly customizable, web-based

tool for visualization of our Facebook category graphs and
made it available at www.geosocialmap.com. For exam-
ple, in Fig. 5, we present a “college-to-college friendship
graph” inferred from our Facebook dataset, with top 133
US colleges grouped by their (private/public) type. We ob-
serve that physical distance is a major factor for public col-
leges (red), but seemingly less so for private ones (blue).
This and other datasets (e.g., “country-to-country friendship
graph”, “North American friendship map”) are available at
www.geosocialmap.com.

7. CONCLUSION
In this paper, we derived a number of category graph es-

timators for (uniform and non-uniform) probability samples
of nodes. We evaluated their performance in simulations
and on Facebook samples. We showed (in [14]) that they
all converge to their true values for reasonable sample sizes.
Based on our evaluation, we also provide recommendations,
summarized as follows. When estimating category sizes,
there is no universal choice between induced and star sam-
pling. For example, the performance of the star estimator
improves (i) in dense graphs, (ii) in graphs with homoge-
neous node degree distribution, (iii) in graphs with weaker
community structure, and (iv) under sampling techniques
that oversample high degree nodes. However, a heteroge-
neous, highly skewed node degree distribution (very common
in many real-life graphs) may strongly reduce or completely
eliminate this gain. In contrast, when estimating the cat-
egory edge weights, the star estimators are a clear winner;
the induced subgraph estimators often need 5-10 times more
samples to achieve the same accuracy. Finally, the sampling
techniques strongly affect estimator efficiency. They can be
ordered from best to worst as follows: UIS, S-WRW, and
RW.

We applied our methodology to samples of Facebook users
and we estimated potentially interesting category graphs,
such as the global friendship map, or the friendship network
of US colleges. We visualized and made publicly available
these weighted topologies at www.geosocialmap.com.
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