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Abstract. We address failure location and restoration in both optical
and wireless ad hoc networks. First, we show how Maximum Likelihood
inference can improve failure location algorithms in the presence of false
and missing alarms. Next, we present two efficient algorithms for map-
ping an IP network on an optical network in such a way that it is pro-
tected against failures at the optical layer. The first algorithm offers
a method to formally verify the existence of a solution, contrary to all
other heuristics known to date. The second algorithm is a heuristic search
that takes capacity constraints in account. Both algorithms are shown
to be faster by orders of magnitude than existing solutions. Finally, we
develop a new routing algorithm for wireless mobile ad hoc networks,
adopting ideas from the Ant Colony Optimization metaheuristic. The
routing scheme can adapt to network and traffic changes and uses mul-
tipath routing and an efficient local repair mechanism to improve failure
resilience.

1 Introduction

An IP-over-fiber network is a typical building block of the Internet’s backbone.
It usually belongs to a single Internet Service Provider (ISP), and is centrally
monitored and managed. The physical infrastructure of an IP-over-fiber network
consists of a mesh of optical fibers usually put in the ground along roads, rails,
or power-lines. Currently, with the help of the Wavelength Division Multiplexing
(WDM) technique, a single optical fiber can carry many signals independently.
The IP links are realized as end-to-end connections routed on this mesh. The
topology formed by the IP links is a result of a centralized optimization process
and reflects the long term user demands. This stack is called an IP-over-WDM
network; its topology rarely changes.

In contrast, a wireless ad-hoc network consists of a group of nodes that com-
municate with each other through wireless radio channels. There is no fixed
infrastructure. Moreover, in some scenarios the nodes are mobile. There is no
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centralized control or overview. There are no designated routers: nodes serve as
routers for each other, and data packets are forwarded from node to node in a
multi-hop fashion. Wireless ad-hoc networks are not yet widely deployed, but
their first real-life applications are beginning to emerge.

Although the IP-over-WDM and wireless ad-hoc settings are quite different in
nature, they share a number of problems and challenges. One of them is failures
of network components. There are many possible sources of failures. In IP-over-
WDM networks it might be a fiber cut, a failure of optical equipment (switch,
router, amplifier), software errors, system misconfiguration, to name a few. In
fact, in real IP backbones failures occur almost every day [1]. Moreover, due
to huge capacities of optical fibers, even a single failure may result in a very
significant disruption of the network functionality. In wireless ad-hoc networks
the main source of failures is the instability of the wireless medium, which results
in frequent failures of existing links and arrivals of new links1. This happens in
terms of minutes [2]. The phenomenon is especially strong if we allow for mobility.
Another typical problem is the limited battery power of nodes, eventually causing
a node failure.

Failures often result from random events and thus are unavoidable. Therefore
one of the crucial properties of a communication network is handling failures. It
is twofold. First, a failure should be located. Since permanent and full network
monitoring is resource inefficient, the network operators often limit it, at the
cost of having only a partial knowledge of the present network state, such as
a set of end-to-end measurements. In this setting, locating a failure becomes a
nontrivial task. Second, once a failure is located, the traffic must be rerouted
and the network operability restored. The mechanisms ensuring this should take
into account all important failure scenarios and a number of physical constraints
(e.g., link capacities).

In this paper we address both issues: failure location and restoration. In Sec-
tion 2 we present the algorithms that can be used for failure location in IP-
over-WDM and wireless networks. Next we give a number of various algorithms
for failure restoration in Section 3 (optical networks) and in Section 4 (wireless
ad-hoc networks). Finally, in Section 5 we conclude the paper.

2 Failure Location

When a failure occurs in the network, monitoring devices (passive or active)
detect the failure and generate alarms to warn the management system. The
management system then needs to infer the location of the failures based on the
received alarms. The failure location task in communication networks is hindered
not only by the existence of multiple possible explanations for some sets of alarms
but also by corrupted alarms, which are those alarms that unexpectedly arrive
at the management system when they should not (false alarms), or those that
do not arrive at the management system when they should (missing alarms).

1 The terms link and edge, as well as node and vertex, will be used interchangeably.
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The nature of failures and available monitoring information differ significantly
in IP-over-WDM and wireless networks. Each type of network therefore needs
to have its own failure location methods. We present in this section two fail-
ure location algorithms that can be used to locate failures in IP-over-fiber and
wireless sensor networks, respectively.

2.1 Failure Location in IP-over-WDM Networks

Failures of optical devices often manifest themselves in the degradation or loss
of optical signals. Passive monitors are widely deployed in these networks to
assess the signal health. When a monitor observes a significant drop in the
signal quality, it sends an alarm to the management system. Alarms can be
generated by devices at the optical, SDH/SONET or IP layer. A full review of
the available monitoring information is provided in [3]. Failure location in IP-
over-WDM networks is known to be NP-hard [4] and several algorithms have
been proposed to solve this intractable problem in the literature (see [3] for
a complete review of the existing failure location algorithms). Although many
researchers [4] have suggested that failure location algorithms must be able to
cope with alarm errors, most location algorithms today avoid this issue because
of the complexity of covering all possible failures and corrupted alarms.

In optical networks, most network monitoring devices use a threshold to decide
whether they should send alarms or not. For instance, an SDH device counts the
number of errors it encounters in a time window and generates an alarm if
the count is greater than a threshold, otherwise it remains silent [5]. Network
operators have the option of trading false alarms for missing alarms and vice
versa by tuning the parameters of monitoring devices. We have studied the
failure location problem in an all-optical IP-over-WDM network when there are
false and missing alarms in [6]. We have rigorously shown that for a network
with binary alarms (alarms are either present or not), there is an asymmetry
between false alarms and missing alarms. We have proven that false alarms can
be corrected in polynomial time, but the correction of missing alarms is NP-
hard. The correction of missing alarms is indeed equivalent to the red-blue set
cover problem [7]. Because of this asymmetry, false alarms have a lesser effect on
the accuracy of the diagnosis results than missing alarms do. Network operators
therefore, when allowed, should set the threshold low to favor false alarms.

To handle corrupted alarms, we have proposed in [6] a polynomial time algo-
rithm that can accurately locate failures with corrupted alarms. The algorithm
takes as inputs the network topology and the positions of the monitors (this
information is available in most IP-over-WDM networks). The algorithm con-
sists of two steps. In the first step, called the Error Correction (EC ) step, the
algorithm uses a maximum likelihood reasoning to identify and correct the most
probable set of corrupted alarms. In the second step, called the MFAULT step,
the algorithm then uses a set-cover heuristic to locate the faulty components
with the cleaned alarms. The failure location algorithm performs well in simu-
lated networks of real topologies as shown in Fig. 1.
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Fig. 1. Performance of the proposed failure location algorithm in the NSFNET
topology [6]. The number of corrupted alarms is kept constant but the fraction of
missing alarms is varied from 0 to 1, where 1 means all corrupted alarms are missing
alarms. The algorithm is evaluated in terms of detection rate (DR), which is the frac-
tion of failures that are correctly identified; and false positive rate (FPR), which is the
fraction of failures that are wrongly identified. The algorithm achieves detection rates
above 75% in all settings and the fewer missing alarms we have, the more accurate the
algorithm is.

2.2 Failure Location in Wireless Sensor Networks

Contrary to IP-over-optical networks, qualities of wireless links vary significantly
in the order of minutes [2]. In wireless sensor networks, it is not essential to mon-
itor and locate all bad links (links with high loss rates), as the network should
quickly self-organize around them. The problem occurs when all links surround-
ing a sensor node are lossy, because of low battery or physical obstacles. In this
case, there is no other choice to access this node than to use a lossy link. The
failure location task in a wireless sensor network therefore mainly concerns the
identification of links that are consistently used to transport data but have bad
quality. Diagnosing sensor networks is challenging because the networks cannot
support much monitoring traffic and change their routing topologies frequently.

In [8] we have proposed to use only end-to-end application traffic to infer
the bad performing links in sensor networks. Due to the lack of other network
monitoring means, end-to-end application traffic is the most reliable source of
network performance indication in wireless sensor networks. The inference of
internal link properties given end-to-end observations is called network tomog-
raphy. A detailed survey of the current tomography techniques is provided in [3].
In most networks end-to-end data do not provide enough information to identify
the exact link loss rates but enough to identify the worst performing links.

We have introduced in [8] two inference techniques to infer lossy links in wire-
less sensor networks. The first algorithm (the LLIS algorithm) uses the maximum
likelihood inference principle, whereas the second one (the MCMC algorithm)
adopts the Bayesian principle. Both algorithms handle well noisy end-to-end
data and routing changes in wireless sensor networks.
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The LLIS algorithm first uses a threshold tp to determine whether the loss
rate on an end-to-end path is good or bad. After classifying all paths as good
and bad, the algorithm then tries to find the smallest set of links whose badness
would explain the badness of all paths in the network. The LLIS algorithm has
the advantage of being simple. But, it is sensitive to estimation errors of end-to-
end transmission rates and the choice of the path threshold tp. The end-to-end
transmission rates are only accurate when we have a sufficiently large number of
packets. To handle the cases where there are not sufficient data to calculate the
end-to-end transmission rates, we have proposed to use the second technique,
namely the Bayesian inference technique [9] that is less vulnerable to end-to-end
loss rates but also much more complex. The idea here is to try to generate a set
of possible link loss rates that can explain the observations of end-to-end data.
If the majority of the possible loss rates of a link are bad, then it is likely that
the link is bad, otherwise it is good. For details of the MCMC method, please
refer to [9].
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Fig. 2. Performance of the failure location algorithms (LLIS and MCMC) on the Sen-
sorscope [10] network. We consider only links that are used to route more than t
packets. As t increases, the algorithms become more accurate because of two reasons:
(1) end-to-end data are more reliable, and (2) there are less errors generated by routing
changes.

The performance of both inference algorithms (LLIS and MCMC) are eval-
uated by simulations and real network traces in [8]. Both algorithms achieve
accurate failure location results with high detection and low false positive rates
as shown in Fig. 2.

3 Failure Protection and Restoration in IP-over-WDM
Networks

The Wavelength Division Multiplexing (WDM) technique allows the same opti-
cal fiber to carry many signals independently, each using different wavelengths
(colors). In real networks the number of these signals is in the order of tens (in
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Fig. 3. IP-over-WDM network. (a) Given the physical and logical topologies, every
logical edge (here e) is mapped on the physical topology as a lightpath. (b) An example
of a mapping that is not survivable. After a failure of the indicated physical link, the
logical topology becomes disconnected (the node v gets separated from the rest of the
logical graph). (c) An example of a survivable mapping. One can easily check that after
any single physical link failure the logical topology remains connected.

the Sprint network the maximum number is 25 [1]). Specialized labs can reach
hundreds and thousands. Therefore a single failure of a physical fiber might have
very significant consequences on the network, and should be carefully handled.

In an IP-over-WDM network we distinguish two layers : the physical graph is
a mesh of optical fibers (edges) and optical switches (nodes). The logical graph is
a mesh of IP connections (edges) and IP routers (nodes). Since we assume that
on every optical switch lies an IP router, the sets of nodes at both layers are
identical. Each logical link is mapped on the physical topology as a lightpath (see
Fig. 3a). The set of all lightpaths defines a mapping of the logical graph on the
physical graph. To construct a mapping, many objectives should be taken into
account. One of them is the robustness to failures, or survivability. This issue
is especially important in the IP-over-WDM architectures, where one physical
link can carry many lightpaths, and thus where a single physical link failure may
bring down a large number of logical links. A survey of different approaches for
providing survivability of IP-over-WDM networks can be found in [3]. In this
paper we consider exclusively the IP restoration approach that was shown to
be effective and cost–efficient (see e.g., Sprint network [11]). In IP restoration,
failures are detected by IP routers, and alternative routes in the logical topology
are found. In order to enable this, the logical topology should remain connected
after a failure of a physical link; this in turn may be guaranteed by an appropriate
mapping of logical links on the physical topology. We call such a mapping a
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survivable mapping. In Fig. 3 we present two examples of mappings: the first one
is not survivable (b) and the second one is survivable (c).

The problem of finding a survivable mapping was first defined in [12], and
many algorithms solving this problem (with different variations) have been pro-
posed since then. In general, they can be divided into two groups: exact al-
gorithms based on Integer Linear Programming (ILP), and heuristics. The ILP
solutions can be found for example in [13,14]. They lead to an unacceptably high
complexity for networks of a non-trivially small size [15] (larger than a few tens
of nodes). This is because the survivable mapping problem is NP-complete [16].
To avoid this prohibitive complexity, the second line of approach uses various
heuristics, such as Tabu Search [12,17,18,14], Simulated Annealing [19] and oth-
ers [20,21].

In this paper we describe two recent algorithms solving the survivable mapping
problem: SMART [22,23] and FastSurv [24,25,26]. These algorithms are very
efficient, and somewhat complementary. SMART is the fastest and the most
scalable algorithm known to date. Moreover, the formal analysis of SMART [23]
has led to new applications: the formal verification of the existence of a survivable
mapping, and a tool tracing and repairing the vulnerable areas of the network.
SMART can be applied only if we assume unlimited capacities of the physical
links. In a more realistic scenario, the FastSurv algorithm shows its strengths.
FastSurv can be easily adapted to any set of real-life constraints, while still being
much faster and more scalable than the other heuristics known to date.

In the following subsections we present versions of the SMART and FastSurv
algorithms that solve the basic survivability problem (single physical edge fail-
ures, no capacity constraints). A number of specific properties of the algorithms
and their possible extensions are described in a later section.

We will use the following notation. The physical and logical topologies are
represented by undirected graphs Gphi = (V, P ) and Glog = (V, L), respectively.
V is the set of vertices (common for both layers), P and L are the sets of
undirected edges. Note that according to our assumption, we take V phi ≡ V log ≡
V . The mapping is represented in a form of a |P |×|L| binary matrix M = {mp,l},
where mp,l = 1 if the logical link l uses the physical link p in its mapping. A
mapping M is survivable if after the failure of any single physical link p ∈ P ,
the logical topology Glog remains connected. More formally, M is survivable, if
for every physical link p ∈ P the graph

Glog
p = Glog \ {l : mp,l = 1} (1)

is connected.

3.1 SMART

One of the main operations in the SMART algorithm is contraction [27]. Con-
tracting an edge e ∈ E in a graph G = (V, E) is deleting that edge and merging
its end–nodes into one. The result is called a contracted graph Gcon. We will also
allow contracting a set of edges A ⊂ E. Note that the order of the edges in A
does not affect the result.



238 F. Ducatelle et al.

 ITERATION 1: ITERATION 2: ITERATION 3: END: 

f 

a 

b

c

d

e

h 

g
C1 

d

e

h 

g f 

C2 
h 

g 

f C3 

f 

a 

b

c

d

e 

h 

g 

f 

a 

b

c

d

e

h 

g
f 

a 

b

c

d

e

h 

g
f

a

b

c

d

e

h 

g 

Glog 

Gphi 

 

Gcon

Glog

Gphi

 

Gcon

Glog 

Gphi 

 

Gcon 

Glog 

Gphi 

 

Gcon 

M 

1CM  2CM
3CM  }{

iC
i

MOR

C1 

C2 
C3 

Fig. 4. Illustration of the SMART algorithm. We have four layers, from bottom to top:
physical topology Gphi, mapping, logical topology Glog and contracted logical topology
Gcon. During a run of the SMART algorithm, only the contracted topology and the
mapping change from one iteration to the next one. The logical and physical topologies
are included only for the context; therefore they are set in grey. At each iteration a
cycle C picked from the contracted topology is set in bold. This cycle is defined as a
set C of logical links. (Although C is always a cycle in the contracted topology Gcon, it
does not necessarily form a cycle in the logical topology Glog; see e.g., Iteration 2 and
3.) Next, a disjoint mapping MC is found for the set C. Then C is contracted in Gcon,
resulting in a new contracted logical topology Gcon used at the subsequent iteration.
Once Gcon has converged to a single node, the underlying mapping is survivable. If
there are still some unmapped logical links, they can be mapped in any way (e.g.,
a shortest path). Now we combine the lightpaths found in all iterations to obtain a
mapping M (last column) of the entire logical topology. The mapping M is survivable.

Now we present the idea of the SMART algorithm. First choose from the
logical topology Glog a cycle C ⊂ L and map it disjointly (i.e., not using the
same physical edge twice). The disjoint mapping of a logical cycle ensures that
this cycle will remain connected after any single physical link failure. In other
words, the cycle C is already mapped in a survivable way. Now, we contract
the cycle C in the logical topology Glog and repeat the above procedure for the
resulting graph. We iterate this operation until the contracted logical topology
converges to a single node, which guarantees survivability. The example run of
SMART is illustrated in Fig. 4. The pseudo-code of the SMART algorithm is:

Initialization. Contracted logical topology Gcon := Glog.
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Step 1: Pick a cycle C in Gcon.
Step 2: Use DisjointMap (see below) to map disjointly the cycle C on the phys-

ical topology. Denote this mapping by MC . (MC is of the size of M , with
non-zero elements appearing only in the rows corresponding to the logical
edges in C)

Step 3: Contract C in Gcon.
IF Gcon consists of one node, THEN RETURN survivable mapping M which
is a superposition of all disjoint mappings MC found before: M =

∨
i MCi .

END.
Step 4: GOTO Step 1.

DisjointMap. In Step 2 of the SMART algorithm, we have to find a disjoint
mapping of the set C of logical links. The problem is equivalent to the edge-
disjoint paths problem [28] that is proven to be NP-complete. Therefore we
apply the following heuristic we call DisjointMap . Let each physical edge have
a weight (these weights will be used exclusively within DisjointMap) and let this
weight be initially set to one. At each iteration, map the logical links from C
with shortest path. If no physical link is used more than once, a disjoint solution
is found. Otherwise, the weight of each physical link used more than once is
increased, and a new iteration starts.

Clearly, DisjointMap does not guarantee success. Therefore after several un-
successful iterations it fails. In this case, the SMART algorithm cannot proceed
to Step 3. Instead it comes back to Step 1 and picks another cycle; a choice of
a short cycle will help the heuristic to converge rapidly. After a rare event of
several consecutive failures of Step 2, the SMART algorithm quits returning the
partial mapping M =

∨
i MCi (some rows of M remain empty).

It is possible that even if the contracted graph Gcon converges to a single
node, there are still some unmapped logical links. They would form self-loops in
Gcon. We can map them in any way (e.g., with shortest path), which does not
affect the survivability of the resulting full mapping.

3.2 FastSurv

FastSurv is a heuristic algorithm that works in an iterative manner. It starts
from an initial mapping M(0) obtained with a simple method. At each iteration
t, the algorithm evaluates the current solution M(t) and tries to improve it by
rerouting a number of logical links.

The improvement phase is based on an observation made in [13] that a map-
ping is survivable if and only if no physical link is shared by all logical links
belonging to a cut-set of Glog.2 E.g., in Fig. 3b, logical links a and b share a
physical link and cause unsurvivability because {a, b} is a cut-set of Glog. In
Fig. 3c, however, a, e and f share a link, but this does not cause unsurvivability
because {a, e, f} is not a cut-set of Glog. An exact solution method based on this

2 A cut-set of a network is defined by a cut of the network: a cut is a partition of the
set of nodes V into two sets S and V − S, and the cut set defined by this cut is the
set of edges that have one endpoint in S and one in V − S.
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idea (such as the ILP method of [13]) needs to take all cut-sets into account as
hard constraints when constructing a mapping, which can be difficult and ineffi-
cient. In FastSurv, we use the notion of cut-sets in a heuristic way. Specifically,
the algorithm keeps track of information about which pairs of logical links li and
lj cause unsurvivability when they are routed together over the same physical
link, and which do not. If li and lj form a cut-set of size two (such as {a, b} in
Fig. 3), they cause unsurvivability each time they are routed together. If li and
lj are part of a larger cut-set (e.g., in Fig. 3, a and e are part of the larger cut-set
{a, c, e, f}), they only cause unsurvivability if all the other logical links of the
same cut-set are also routed on the same link. The routing of these other logical
links depends on the specific situation (the current mapping M(t)), which in
FastSurv changes slowly from iteration to iteration since each time a number of
logical links are rerouted. FastSurv updates at each iteration according to the
current mapping the information about which pairs of logical links cause unsur-
vivability when they share a link, and uses this information to reroute logical
links. This way, FastSurv can focus on the cut-sets which are important in the
current situation when trying to improve the survivability of the mapping. The
pseudo code for FastSurv is as follows:

Initialization. Calculate M(0) and set the number of iterations t to 0.
Step 1: Evaluate M(t).
Step 2: Update the information about which pairs of logical links cause un-

survivability when they share a physical link, based on the evaluation of
M(t).

Step 3: RETURN M(t) IF ((M(t) is survivable) OR (t = maximum number
of iterations)).

Step 4: Calculate M(t + 1) by rerouting logical links of M(t) using the infor-
mation of Step 2.

Step 5: Increase t and GOTO Step 1.

To obtain M(0), the logical links are routed on Gphi one after the other in
random order. We use shortest path routing, with the cost of a physical link p
equal to the number of logical links that are already routed over p. This simple
algorithm avoids that some links carry many more logical links than others,
which would make them more vulnerable with respect to survivability.

In Step 1, M(t) is evaluated by considering all physical links p of P individ-
ually, and investigating whether the remaining logical graph Glog

p (as defined in
formula (1)) is connected. Physical links whose failure leaves Glog

p disconnected
are called unsurvivable physical links, and the logical links that are routed over
them are called unsurvivable logical links. The algorithm uses a binary vector
U = {up}(t), where up(t) = 1 if p is an unsurvivable physical link in M(t) and
up(t) = 0 otherwise.

The information about which pairs of logical links cause unsurvivability when
they share a physical link is kept in a |L|× |L| matrix Z = {zli,lj }. Z is updated
according to the formulas (2)-(4) below. In formula (2), ali,lj(t) is defined as the
number of times that logical links li and lj share a physical link in M(t), and in
formula (3), bli,lj (t) is defined as the number of times that this shared physical
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link is unsurvivable in M(t). Dividing bli,lj (t) by ali,lj (t), one obtains a ratio
that can be seen as an estimate (based on the experience of iteration t) of the
probability that combining logical links li and lj on a physical link will make that
physical link unsurvivable. zli,lj is then defined in formula (4) as the exponential
average of this probability estimate (with α = 0.2 in the experiments).

ali,lj (t) =
∑

p

mp,li(t)mp,lj (t) ∀li, lj ∈ L (2)

bli,lj (t) =
∑

p

up(t)mp,li(t)mp,lj (t) ∀li, lj ∈ C (3)

zli,lj =

{
αzli,lj + (1 − α)

bli,lj
(t)

ali,lj
(t) if ali,lj (t) > 0

zli,lj if ali,lj (t) = 0
(4)

In Step 4, FastSurv reroutes all logical links that are unsurvivable in the
current mapping (survivable logical links are left mapped as they were), using
the probability estimates of Z. A shortest path algorithm is applied in which the
cost of a path for a logical link li is the probability that li will be unsurvivable
somewhere along its path. The probability Probli

path that li will be unsurvivable
on a path is the probability that it will be unsurvivable on at least one physical
link of the path. The probability Probli

p that li will be unsurvivable on a physical
link p of the path is the probability that li will cause unsurvivability when routed
together with any of the other logical links lj which use p,3 which is estimated
in zli,lj . We use formula (5) to estimate Probli

p and formula (6) to estimate
Probli

path.

Probli
p = 1 −

∏

lj on p

(1 − zli,lj ) (5)

Probli
path = 1 −

∏

p on path

(1 − Probli
p ) (6)

3.3 Time Complexity

SMART. The complexity of one iteration of SMART is dominated by the
DisjointMap function in Step 2 of the algorithm. Assuming a small size of the
cycles C (in order of O(1)), this heuristic has a complexity O(Dijkstra) that is
at most O(N2), where N is the number of nodes in the graph. To estimate the
number of iterations before SMART converges, we note that a single iteration
maps one cycle, which reduces the number of nodes by at least one. So we need
at most O(N) iterations. It results in a total complexity of SMART equal to
O(N3).

In practice, the physical graph is sparse, i.e., has got O(N) edges, which
reduces the complexity of O(Dijkstra) to O(N log N). Consequently, the com-
plexity of SMART drops to O(N2 log N).
3 Other logical links can already be using p either because they were not removed after

the previous iteration or because they were rerouted before li.
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FastSurv. Each iteration of FastSurv consists of an evaluation and a num-
ber of logical link reroutings. Rerouting a single logical link has a complexity
O(Dijkstra) (which is maximally of O(N2)) and the evaluation of survivability
has a maximal complexity of O(N4) [26]. Therefore, given that the maximum
number of logical links to be rerouted in one iteration is the total number of
logical links, which is O(N) (we follow [17], where logical networks of a fixed
degree are considered), a single iteration of FastSurv has a maximal complexity
of O(N4). Since the maximal number of iterations is a parameter independent
of N (and usually small), the overall complexity of FastSurv is O(N4) as well.

3.4 Results

ILP Approach. In [13] the necessary and sufficient conditions for a mapping to
be survivable are specified (see Subsection 3.2 for details). These conditions are
injected into the Integer Linear Programming (ILP) formulation, that is used to
find a survivable mapping. Then a simple relaxation (ILP-Relax) for the ILP is
introduced, which substantially reduces the processing time.

We ran the SMART and FastSurv algorithms for exactly the same topologies
as in [13], namely NSFNET as the physical topology and the same 300 random
graphs of degree d̄ = 3, 4 and 5 as those in [13] for the logical topologies. A
survivable mapping was found in all runs when using ILP, ILP-Relax, SMART
and FastSurv approaches. Therefore it is interesting to compare the run–times
of the algorithms. The machines were not the same, yet comparable (Sun Sparc
Ultra-10 vs. Pentium 500). However, we must stress that SMART and FastSurv
were implemented in pure C++, whereas ILP required a dedicated program
(CPLEX), which could significantly affect the results. The run-times from [13]
are reprinted in Table 1; the last two columns show the results of SMART and
FastSurv. The SMART algorithm is several orders of magnitude faster than
pure ILP, and about 3 orders of magnitude faster than the relaxed version of
ILP. FastSurv is about one order of magnitude slower than SMART. Note that,
in contrast to ILP, the degree of the logical topology hardly affects the run-time
of SMART and FastSurv.

Tabu Search and Large Topologies. One of the most efficient and widely
used techniques to solve a survivable mapping problem is Tabu Search. Our
implementation of Tabu Search follows the one in [12]; we will refer to it as
Tabu97. Since Tabu Search turned out to be substantially faster than the ILP
approach (described in the previous section), we carried out the simulations

Table 1. Run-times of ILP, SMART and FastSurv

Average degree d̄ ILP ILP-Relax SMART FastSurv
3 8.3 sec 1.3 sec 0.0028 sec 0.0117 sec
4 2 min 53 sec 1.5 sec 0.0028 sec 0.0155 sec
5 19 min 17 sec 2.0 sec 0.0029 sec 0.0166 sec
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for relatively large graphs and studied the scalability of Tabu Search, FastSurv
and SMART. To emulate larger real-life physical topologies we generate square
lattices where each vertex is connected by an edge to its four closest neighbors
only. Next a fraction f of these edges is deleted; we call them f -lattices. We
keep only these f -lattices that are 2–edge–connected.4 The parameter f ranges
from 0 to 0.35. The maximal value 0.35 was chosen in such a way that even the
smallest topologies could be 2–edge–connected. Since the logical graph is less
regular (for instance, there is no reason why it should be planar), the logical
topologies are 2-edge-connected random graphs of average vertex degree d̄ = 4.
The number of vertices ranges from N = 16 to 900.

In Fig. 5 we present the results obtained in simulations on a Pentium 4 ma-
chine, for the three algorithms implemented in C++. In Fig. 5a we investigate
the run–times of the Tabu97, FastSurv and SMART. The observed complex-
ities of the algorithms are polynomial, with O(N3.6) for Tabu97, O(N2.8) for
FastSurv, and O(N2.4) for SMART5. These values fit in the theoretical maximal
bounds that are O(N5), O(N4) and O(N3), respectively. Note that Tabu97 took
about 11 hours when solving a 900 node problem, which is a lot more than the
3 minutes measured for FastSurv and the 25 seconds for SMART.

Fig. 5b is related to the effectiveness of the algorithms, i.e., their ability to find
a survivable mapping. Although FastSurv and SMART are comparable (with a
slight advantage of the former), Tabu97 is significantly worse, especially for larger
topologies. It should be noted that for every N a fraction of studied topologies
is impossible to be mapped in a survivable way, which makes the upper bound
of the effectiveness smaller than one.

3.5 Extensions

In the previous sections we have defined the survivability problem by taking
into account single physical edge failures only, and assuming no capacity or
other real-life constraints. We have described and compared the versions of the
SMART and FastSurv algorithms, solving this basic survivability problem. How-
ever, these algorithms have a number of useful properties that can be exploited.
In that regard they turn out to differ substantially. In particular, a proper appli-
cation of the SMART algorithm gives us a valuable insight into the survivability
problem, whereas FastSurv can be easily extended to a setting with any set of
real-life constraints (e.g., limited fiber capacities). We briefly describe some of
the possible applications below.

Capacity Constraints. An optical fiber connection can only carry a limited
number of different lightpaths, which is a capacity constraint for each physical
4 A graph G is k-edge-connected if G is connected and every set of edges disconnecting

G has at least k edges [27]. Clearly, 2-edge-connectivity of both physical and logical
graphs is a necessary condition for the existence of a survivable mapping.

5 The measured value of SMART complexity O(N2.4) is larger than the theoretical
bound O(N2 log N). This is probably because the DisjointMap function often takes
several (not one) iterations to converge.
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Fig. 5. Test results for Tabu97, FastSurv and SMART using logical and physical net-
works of increasing number of nodes (16 − 900). The logical networks are random
graphs, whereas the physical networks are f -lattices, with f ranging from 0 till 0.35
with a step size of 0.05. Each data point represents an average over 1000 different test
problems and over all values for f . (a) shows the run time in CPU seconds as a function
of the number of nodes in a log-log scale. For each curve we indicate the exponent of
its power-law fit. (b) shows the fraction of successfully mapped topologies as a function
of the number of nodes.

link. Here we present an extended version of the FastSurv algorithm that can find
a survivable mapping while considering the limited physical link capacities. For
SMART such an extension is less straightforward due to its particular approach.

Like the basic FastSurv survivable routing algorithm, the extended FastSurv
algorithm starts from an initial solution that it tries to improve in subsequent
iterations. The algorithm uses two different types of iterations. Survivability
iterations are identical to the iterations of the basic FastSurv algorithm and
aim at improving survivability while relaxing the capacity constraint.Capacity
iterations reduce the number of capacity constraint violations while relaxing the
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survivability goal. The algorithm alternates between a number of survivability
iterations and a number of capacity iterations, and stops when it finds a mapping
that is survivable and satisfies all link capacity constraints (or when a maximum
number of iterations is reached).

In each capacity iteration, the algorithm tries to improve the current mapping
by rerouting logical links that were routed on overfull physical links. For the
rerouting, we use the shortest path routing where the cost of a physical link is
equal to the number of logical links already routed over this physical link divided
by the maximum capacity of the physical link, except when the number of logical
links is higher than or equal to the capacity, in which case the number is not
divided by the capacity. This way physical links that are full are avoided.

In a large series of tests, we have shown that the extended FastSurv algorithm
outperforms tabu search in terms of solution quality and time [26]. Moreover, it
is much more scalable.

Verification of the Existence of a Survivable Solution. If a heuristic
fails, nothing can be claimed about the existence of a survivable mapping. To
date, the only general method verifying the existence of a survivable mapping
was an exhaustive search run for the entire logical topology Glog. Due to NP-
completeness of the survivable mapping problem, the exhaustive approach is
not realizable in practice for topologies larger than a few nodes. The SMART
algorithm can substantially simplify this procedure. It turns out that it is suf-
ficient to verify only the resulting contracted graph Gcon (from a terminated
run), instead of Glog. This makes the verification of the existence of a survivable
mapping often possible for moderate and large topologies [23].

Tracing and Repairing the Vulnerable Areas in the Network. A second
novel application of SMART is tracing the vulnerable areas in the network and
pointing where new link(s) should be added to enable a survivable mapping.

Once we know that a particular pair of physical and logical topologies cannot
(or can difficultly) be mapped in a survivable way, a natural question is to
modify the topologies to enable such a mapping. Where should a new logical
link lnew be added? The SMART algorithm helps us answer this question. Run
SMART and wait until it terminates. Since a survivable mapping does not exist,
the contracted topology Gcon will not converge to a single node. Most probably
Gcon will shrink to a small structure (in comparison with the original logical
graph Glog) and the algorithm will give up. Consider the graph Gcon. Addition
of the new logical link lnew to the logical topology results in addition of lnew

also to Gcon. In [23] it was shown that if lnew forms a self-loop in Gcon, then its
introduction will never help survivability. In other words, to enable a survivable
mapping we should locate lnew in such a way, that it connects two different
vertices in Gcon.

The simulation results in [23] have shown that the SMART-aided introduction
of a new logical link greatly helps, contrary to a completely random choice of
location of this link.

Node, Span and Double Link Failures. So far we have only considered
survivability with respect to single physical link failures, which are the most
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common type of failures in WDM networks. Here, we describe how FastSurv
and SMART can be adapted to deal with more complicated failures such as
span, node and double link failures. A span is a bundle of physical links that
have been placed together for cost reasons (e.g., along railway and electricity
lines). A single cut can break all of these physical links at once, in which case
we speak of span failure [29]. We can also encounter node failures [30]; they
are the consequence of a failure of equipment at nodes, such as switches. In our
context a node failure is equivalent to a failure of all physical links neighboring
the node. Finally, we consider double–link failures, i.e., independent failures of
any two physical links [31]. Usually such a situation takes place when the second
failure occurs before the first one is repaired.

Adapting FastSurv to deal with span failures is straightforward. Although the
basic algorithm described in Subsection 3.2 kept track of which pairs of logical
links cause unsurvivability when they share a link, it should now consider which
pairs of logical links cause unsurvivability when they share a span. To adapt
SMART we have to modify only the DisjointMap function used in Step 2 to
produce span-disjoint mappings (instead of only link-disjoint).

The adaptation of FastSurv to deal with node failures is again not difficult: the
algorithm should consider which pairs of logical links cause unsurvivability when
they are routed together over the same node. Since a logical link can never be
routed survivably with respect to its end nodes, logical links incident on a node
should not be considered to share that node. For SMART, we make DisjointMap
generate node-disjoint mappings.

To deal with double link failures, FastSurv should investigate survivability
with respect to all pairs of physical links, and register which pairs of logical
links cause unsurvivability when routed over these pairs of physical links. In the
case of SMART, any logical cycle C processed by the algorithm can clearly be
disconnected by a double failure. In order to enable protection against double
failures we take small 3-edge-connected structures instead of this cycle, as shown
in Fig. 6. Note that the contracted logical graph can have multi-edges, and so
do these structures. The rest of the SMART algorithm remains unchanged. In
particular the DisjointMap heuristic searches for a link-disjoint mapping, as in
its original version.

 

Fig. 6. Examples of 3-edge-connected structures that might be used by SMART to
handle double failures
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3.6 Conclusion

Table 2 summarizes the efficiency and functionality of SMART and FastSurv,
and compares them with ILP and Tabu97. Both algorithms are much faster and
more scalable than any solution proposed to date. As for the possible exten-
sions and particular properties, the two algorithms can be regarded as being
complementary. SMART provides us with a method of formal verification of the
existence of a survivable mapping and a tool tracing and repairing the vulnera-
ble areas of the network, whereas FastSurv can be easily adapted to any set of
real-life requirements such as capacity constraints.

Table 2. Comparison of the efficiency and functionalities of SMART, FastSurv, ILP
and Tabu97. The question mark “?” means that the option might be possible to realize,
but that, to the best of our knowledge, no one has yet done it to date.

Functionality SMART FastSurv ILP Tabu
fast and scalable �� � × ×

capacity and other constraints × � � �
verification of a solution existence � × � ×

node failures � � ? ?
span failures � � ? ?

multiple failures � � ? ?
tracing and repairing the vulnerable areas � × × ×

4 Failure Restoration in Mobile Ad Hoc Networks by
Rerouting

Mobile Ad Hoc Networks (MANETs) [32] are wireless ad hoc networks in which
all nodes are mobile. Due to this mobility, the network topology, which is formed
by the wireless links established between nodes that are in each other’s vicinity, is
dynamic, with regular failures of existing links and arrivals of new links. Dealing
with these constant changes is made more difficult by other challenges, such as
the low bandwidth of the shared wireless channel, which is mainly due to the need
to use inefficient decentralized mechanisms for medium access control, the limited
resources of mobile devices (battery power and memory), the high error rates
and signal interference in wireless communication, the lack of central control,
etc.. In this setting a failure restoration problem boils down to constructing a
scalable and highly adaptive routing algorithm. It should also be robust and
efficient, and work in a distributed way. The abilities to deal with link failures
and to take advantage of new opportunities arising from the appearance of new
links are crucial.

In this section, we describe a novel routing algorithm for MANETs which is
adaptive and failure resilient. It takes inspiration from Ant Colony Optimization
(ACO) [33] and the related class of ACO routing algorithms [34], and uses both
reactive and proactive strategies to deal with the dynamic MANET topology.
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In what follows, we first give a short overview of the current state of the art in
MANET routing. Next, we give an introduction to the field of ACO and ACO
routing. Then we describe the working of our algorithm, and finally we provide
some results from simulation tests.

4.1 MANET Routing

Over the course of the last 10 years a large number of different MANET routing
protocols have been proposed (see [32,35] for overviews). All these algorithms
deal with the dynamic aspects of MANETs in their own way, using reactive or
proactive behavior, or a combination of both. Reactive behavior means that an
algorithm gathers routing information in response to an event, such as the start
of a data session or the failure of a link on an existing route. Proactive behavior
means that the algorithm also gathers routing information at other times, so
that it is readily available when the event happens.

In the MANET literature, the classical distinction is between table-driven,
on-demand and hybrid algorithms. Table-driven algorithms, such as e.g. Destina-
tion-Sequenced Distance-Vector Routing (DSDV) [36], are purely proactive: all
nodes try to maintain routes to all other nodes at all times. This means that they
need to keep track of all topology changes, which can become difficult if there
are a lot of nodes or if they are very mobile. On-demand algorithms, such as
Ad-Hoc On-Demand Distance Vector Routing (AODV) [37] and Dynamic Source
Routing (DSR) [38], are purely reactive: nodes only gather routing information
when a data session to a new destination starts, or when a route that is in use
fails. Reactive algorithms are generally more scalable since they greatly reduce
the overhead [39], but they can suffer from oscillations in performance because
they are never prepared for disruptive events. In practice, many algorithms are
hybrid algorithms (e.g. Zone Routing Protocol (ZRP) [40]), using both proactive
and reactive components in order to combine the best of both worlds.

The traditional distinction between table-driven, on-demand and hybrid pro-
tocols tells only part of the story. One can classify MANET routing algorithms
along a wide range of other dimensions. An important classification with respect
to the work presented here is the difference between single path and multi-path
algorithms. Many algorithms that use more than one path between each source
and destination have been proposed (see [41] for an overview). They differ in the
way multiple paths are set up, maintained and used. Multiple paths can serve
as a way to enhance throughput, or as a way to increase robustness to link fail-
ures by providing backup paths. A disadvantage is that more overhead is needed
because more than one path needs to be maintained.

4.2 ACO and ACO Routing

ACO (Ant Colony Optimization) is a framework for optimization inspired by
the mechanisms used by ant colonies to find the shortest path between their
nest and a food source [33]. Ants leave behind a trail of a volatile chemical
substance called pheromone; they also move preferentially in the direction of a
higher pheromone intensity [42]. Since shorter paths can be completed quicker
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and more frequently by the ants, they get marked with higher pheromone in-
tensity. These paths therefore attract more ants, which in turn increases the
pheromone level. Finally, there is convergence of the majority of the ants onto
the shortest path, with only a few ants continuing exploration of other paths.
In ACO, artificial ants build solutions to an optimization problem guided by an
artificial pheromone matrix, and update the matrix according to the quality of
the solution they have constructed. ACO was first developed as a meta-heuristic
for combinatorial optimization, and its first applications were for the travelling
salesman problem [43]. Later, it has been applied to a whole range of different
problems (see [33] for an overview).

The application of the ACO ideas to the problem of routing in wired networks
led to the development of ACO routing algorithms [34], such as Ant Based Con-
trol (ABC) [44] and AntNet [45]. The main idea behind ACO routing is the ac-
quisition of routing information through path sampling using ant agents. These
lightweight agents are generated concurrently and independently by the nodes,
with the task to try out a path to an assigned destination. An ant going from
source s to destination d collects information about the cost of its path (e.g.
end-to-end delay) and, tracing its way back from d to s, uses this information to
update routing tables at intermediate nodes. The routing tables contain values
indicating the relative goodness of each routing decision. The routing tables are
updated by the ants and they are also used by the ants to find their way to their
destination: at each node ants stochastically choose a next hop, giving higher
probability to those next hops that are associated with higher goodness values.
This way, the routing table entries play the role of artificial pheromone values in
the ant learning process. The routing tables are therefore also called pheromone
tables, and their entries pheromone values. The continuous generation of ants
results in the availability at each node of a bundle of paths, each with an esti-
mated measure of quality. These paths are used to route data packets. Like the
ants, data packets are routed stochastically, choosing with a higher probability
those links associated with higher pheromone values. This way data for a same
destination are adaptively spread over multiple paths (but with a preference for
the best paths), resulting in load balancing.

4.3 A Novel ACO Routing Algorithm for MANETs

ACO routing algorithms have properties that are useful for MANETs. First of
all, the continuous exploration of paths provides adaptivity, which is crucial
in the dynamic MANET environment. Although ACO routing algorithms for
wired networks were mainly designed to provide adaptivity with respect to data
load changes, the same techniques can be extended to provide adaptivity with
respect to topology changes, allowing for the use of new links and adjusting
routing information after link failures. Second, the use of multiple paths provides
a way to both increase throughput via data load spreading and to proactively
deal with link failures by providing backup paths. Finally, the fact that routing
information is learned from the accumulated experience of agents that sample
full paths offers robustness, in two different ways. First of all, loss of agents
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is not a problem: it leads to slower updates, but not to wrong information.
Second, route cost estimates are based on real experiences. This is in contrast
with information bootstrapping techniques used in traditional distance vector
routing algorithms [46], where nodes calculate route cost estimates based on the
estimates reported by neighboring nodes. Although information bootstrapping
is an efficient process, it is slow to converge after changes and can easily lead to
errors in dynamic environments. Sampling full paths provides extra guarantees
with respect to the correctness of the information.

There are however also disadvantages for MANETs in ACO routing. Firstly,
ACO routing algorithms are normally purely proactive, maintaining routing in-
formation between all pairs of nodes at all times. Following this approach, a lot
of unnecessary overhead is created, making the algorithm less efficient. Also, the
lack of reactive components decreases adaptivity, because no specific reactions
are triggered after a disruptive event. A second important disadvantage of ACO
routing algorithms is the fact that the repeated path sampling using ant agents
can come into conflict with the limited bandwidth in MANETs. Moreover, the
high change rate of MANETs commands a higher sampling rate to keep routing
information up to date, further aggravating the problem.

Here we present AntHocNet, an attempt to build an efficient, adaptive and ro-
bust routing algorithm for MANETs using the design principles from ACO rout-
ing. The algorithm has a hybrid architecture, combining a reactive path setup
phase, which is typical for purely reactive algorithms such as AODV [37], with
proactive monitoring and exploration using sampling with ant agents. Further re-
active elements are introduced for dealing with link failures: while proactive path
sampling allows for the updating of information about current paths and for the
finding of new paths, the use of mechanisms to reactively deal with link failures
enhances direct adaptivity. A last important feature of AntHocNet is the fact
that the process of path sampling using ant agents is supported by a lightweight
information bootstrapping mechanism: the routing information learned by the
ant agents is spread over the networks in a process we call pheromone diffusion.
Although information bootstrapping is more efficient, it is less reliable and ro-
bust than ant sampling, and it is therefore used as a secondary process to guide
and speed up the learning by the ants.

In what follows, we first give a general overview of the AntHocNet algorithm,
and then discuss each of its components in more detail. For other, more detailed
descriptions of the algorithm, we refer the interested reader to [47,48,49,50,51].

Overview of the Algorithm. In AntHocNet nodes only actively gather and
maintain routing information for destinations they are currently communicating
with. At the start of a communication session, the source node gathers initial
routing information in a reactive path setup phase. During the course of the
session, the source node engages in proactive route maintenance and exploration.
To this end, it periodically sends out ant-like agents, to sample paths to the
destination, very much like in ACO routing algorithms for wired networks. This
basic mechanism is supported by the previously discussed pheromone diffusion
process: the routing information obtained via repeated ant sampling is spread
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between the nodes of the MANET via information bootstrapping to provide
secondary guidance. When a link failure is detected during the course of a session,
this is dealt with using reactive link failure mechanisms, such as a local route
repair mechanism and the spreading of failure notification messages. The use of
all of these mechanisms together results in the availability of a set of multiple
paths for each communication session. Data packets are spread stochastically
over these different paths, according to the learned pheromone tables.

Pheromone Routing Tables. Like other ACO routing algorithms, AntHocNet
uses the datagram model of IP networks, where paths are expressed in the form
of tables kept locally at each node. A pheromone table T i at node i is a matrix,
where each entry T i

nd ∈ R of the table is an artificial pheromone value indicating
the estimated goodness of going from i over neighbor n to reach destination d.
Goodness is a combined measure of path end-to-end delay and number of hops.
Since AntHocNet only maintains information about destinations that are active
in a communication session, and since the neighbors of a node change continually,
the filling of the pheromone tables is sparse and dynamic. The learned tables
are used to route data packets in a stochastic forwarding process (see further).

Reactive Path Setup. When a source node s starts a communication session
with a destination node d, and it does not have routing information for d avail-
able, it broadcasts a reactive forward ant to obtain initial information. At each
node, the ant is either unicast or broadcast, depending on whether the current
node has or has not routing information for d. If pheromone information is avail-
able, the ant chooses its next hop n with the probability Pnd which depends on
the relative goodness of n as a next hop, expressed in the pheromone variable
T i

nd:

Pnd =
(T i

nd)β

∑
j∈N i

d
(T i

jd)β
, β ≥ 1, (7)

where N i
d is the set of neighbors of i over which a path to d is known, and β

is a parameter value that controls the exploratory behavior of the ants. If no
pheromone information is available, the ant is broadcast. Due to subsequent
broadcasts, many duplicate copies of the same ant travel to the destination. A
node that receives multiple copies only accepts the first and discards the others.
This way, only one path is set up initially. During the course of the commu-
nication session more paths are added via the proactive path exploration and
maintenance mechanism to provide a mesh of multiple paths for data forwarding.

Each forward ant keeps a list P = [1, 2, . . . , d] of the nodes it has visited.
Upon arrival at the destination d, it is converted into a backward ant that travels
back to the source retracing P . At each intermediate node i ∈ P (i < d), the
backward ant reads a locally maintained estimate T̂ i

i+1 of the time it takes to
reach the neighbor i+1 the ant is coming from. The time T̂ i

d it would take a data
packet to reach d from i over P is calculated incrementally as the sum of the
local estimates T̂ j

j+1 gathered by the ant between i and d. A pheromone value
is a goodness measure, expressed as an inverted cost, which takes into account
both end-to-end delay and number of hops. It has the dimension of an inverted
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time. Therefore, to calculate the pheromone update value τ i
d, we combine the

estimated delay T̂ i
d with the number of hops to the destination h as follows:

τ i
d =

(
T̂ i

d + hThop

2

)−1

, (8)

where Thop is a fixed value representing the time to take one hop in unloaded
conditions. Defining τ i

d like this is a way to avoid possibly large oscillations in
the time estimates gathered by the ants (e.g., due to local bursts of traffic) and
to take into account both end-to-end delay and number of hops. The pheromone
value T i

nd is updated as follows:

T i
nd = γT i

nd + (1 − γ)τ i
d, γ ∈ [0, 1]. (9)

Once the backward ant makes it back to the source, a full path is set up and
the source can start sending data. If the backward ant does not arrive for some
reason, a timer will run out at the source, and the whole process is started again.
Proactive Path Maintenance and Exploration. During the course of a
session, source nodes send out proactive forward ants to update the information
about currently used paths and to try to find new paths. They follow pheromone
and update routing tables in the same way as reactive forward ants. As pointed
out previously, the ant sending rate needed to keep up with the constant changes
of a MANET environment is quite high, so that the process comes into conflict
with the typically limited bandwidth in such networks. Moreover, to find entirely
new paths, blind exploration through random walks or broadcasts would be
needed, again leading to excessive bandwidth consumption. Therefore, we use
a supporting process, called pheromone diffusion. It provides a second way of
updating pheromone information about existing paths and can give information
to guide exploratory behavior.

Pheromone diffusion is implemented using hello messages, broadcast period-
ically and asynchronously by the nodes. In these messages, the sending node n
places a list of destinations it has information about, including for each of these
destinations d the best pheromone value T n

m∗d, m
∗ ∈ N n

d , which n has available
for d. A node i receiving the hello message from n first registers that n is its
neighbor. Then, for each destination d listed in the message, it can derive an
estimate of the goodness of going from i to d over n, combining the cost of hop-
ping from i to n with the reported pheromone value T n

m∗d. We call the obtained
estimate the bootstrapped pheromone variable Bi

nd, since it is built up using an
estimate which is non-local to i. This bootstrapped pheromone variable can in
turn be forwarded in the next hello message sent out by i, giving rise to a boot-
strapped pheromone field over the MANET. This way of spreading information
over a network is based on information bootstrapping techniques used in dy-
namic programming and it is often used in traditional routing algorithms for
wired networks [46]. It is an efficient process, but can be slow to converge.

For the maintenance of existing paths, a bootstrapped pheromone is used di-
rectly. If i already has a pheromone entry T i

nd in its routing table for destination
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d going over neighbor n, Bi
nd is treated as an update of the goodness estimate

of this path, and is used directly to replace T i
nd. Due to the slow multi-step

forwarding of bootstrapped pheromone in hello messages, this information does
not provide the most accurate view of the current situation. However, the infor-
mation is obtained via a lightweight, efficient process, and is complemented by
the explicit path updating done by the ants. In this way we have two updating
frequencies in the path maintenance process.

For path exploration, a bootstrapped pheromone is used indirectly. If i does
not yet have a value for T i

nd in its routing table, Bi
nd could indicate a possible

new path from i to d over n. However, this path has never been sampled ex-
plicitly by an ant, and due to the slow convergence of the multi-step pheromone
bootstrapping process it could be inaccurate, containing undetected loops or
dangling links. It is therefore not used directly for data forwarding. It is seen as
a sort of virtual pheromone, which needs to be tested. Proactive forward ants
will use both the regular and the virtual pheromone to find their way to the
destination, so that they can test the proposed new paths. This way, promis-
ing virtual pheromone is investigated, and if the investigation is successful it is
turned into a regular path that can be used for data.

Reactively Dealing with Link Failures. Nodes can detect link failures when
unicast transmissions fail, or when expected periodic hello messages were not re-
ceived from a neighbor. When a neighbor disappears, the node takes a number
of actions. First, it removes the neighbor from its neighbor table and all associ-
ated entries from its pheromone table. Next, the node broadcasts a link failure
message to notify other nodes of the changed situation. The message contains a
list of the destinations to which the node lost its best path, and the new best
pheromone to this destination (if it still has entries for the destination). All its
neighbors receive the message and update their pheromone table using the new
estimates. If they in turn lost their best only path to a destination, they will
broadcast a message on to their neighbors, until all concerned nodes are notified
of the new situation.

If after the link failure an intermediate node is left with data packets to send
but without paths to their destination, the node will start a local route repair.
The node broadcasts a route repair ant that travels to the involved destination
like a reactive forward ant: it follows available routing information when it can
and is broadcast otherwise. One important difference is that it has a restricted
number of broadcasts so that its proliferation is limited. If the local repair fails,
the node broadcasts a link failure message to notify other nodes. If the source
of a communication session is left with no paths to the destination, it starts a
new path setup phase.

Stochastic Data Routing. Data are forwarded according to the values of the
pheromone entries. Like in other ACO routing algorithms, nodes in AntHocNet
forward data stochastically. When a node has multiple next hops for the desti-
nation d of the data, it randomly selects one of them, with probability Pnd. Pnd

is calculated in the same way as for reactive forward ants, using equation (7).
However, a higher value for the exponent β is used in order to avoid the least
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good paths. The probabilistic routing strategy leads to data load spreading ac-
cording to the estimated quality of the paths. If estimates are kept up-to-date,
this leads to automatic load balancing. When a path is clearly worse than others,
it is avoided, and its congestion is relieved. Other paths get more traffic, leading
to higher congestion, which makes their end-to-end delay increase. By adapting
the data traffic, the nodes spread the data load evenly over the network.

4.4 Simulation Results

AntHocNet’s performance was evaluated in an extensive set of simulation tests
using QualNet [52]. We have studied the behavior of the algorithm under dif-
ferent conditions for network size, connectivity and change rate, radio channel
capacity, data traffic patterns, and node mobility. Performance was measured in
terms of data delivery ratio, end-to-end packet delay and delay jitter as mea-
sures of effectiveness, and routing overhead in number of control packets per
successfully delivered data packet as measure of efficiency. To assess the perfor-
mance of our algorithm relative to the state of the art in the field, we compare
to AODV [37], which is a de facto standard algorithm and is commonly used in
comparative studies. Due to space limitations, we only present a small subset
of the results of these simulation tests. For the full set of experiments we again
refer to [47,48,49,50,51].

For the tests reported on here, we used MANET scenarios in which 100 nodes
are randomly placed in an area of 3000 × 1000 m2. Each test lasts 900 seconds.
Data traffic is generated by 20 constant bit rate (CBR) sources sending one 64-
byte packet per second. Each source starts sending at a random time between
0 and 180 seconds after the start of the simulation, and keeps sending until the
end. The radio range of the nodes is 300 meters, and the data rate is 2 Mbit/s. At
the MAC layer we use the IEEE 802.11b DCF protocol as is common in MANET
research. The nodes move according to the random waypoint (RWP) mobility
model [38]: they choose a random destination point and a random speed, move
to the chosen point with the chosen speed, and then rest at that point for a
fixed amount of pause time before they choose a new destination and speed.
The speed is chosen between 0 and 20 m/s. The pause time is the variable over
which we compare the algorithms.

We created experiments using pause times from 0 up to 480 seconds. Higher
pause times lead to slower changing environments (so less link failures), but also
to sparser scenarios and hence to lower connectivity. This is because moving
nodes tend to cluster around the middle of the MANET area, whereas nodes
that pause are spread out randomly (see [53] for properties of the node distribu-
tion under RWP mobility). For each pause time we made 10 different test runs.
The results of the tests are presented in Figs. 7 (average delay and delivery ratio)
and 8 (average jitter and overhead). AntHocNet shows much better effectiveness
than AODV, in terms of average delay, delivery ratio and jitter. AODV has better
efficiency, measured as routing overhead, but the difference is rather small. The
bad efficiency for high pause times is due to the reduced connectivity: AntHocNet
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has a high frequency to retry failed path setups, leading to high overhead in case
source and destination are not connected.
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Fig. 7. Average delay and delivery ratio for increasing pause times
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In order to illustrate the difference in adaptivity between AntHocNet and
AODV, we show the detailed evolution of the end-to-end delay (rather than
showing average values) over the course of a test run in which some important
events take place. We use the same setup as before, but keep the pause time
constant at 30 seconds, and use different data traffic patterns in order to intro-
duce disruptive events. 10 randomly chosen sources start to send to one single
destination between 100 and 110 seconds after the simulation begins, and they
keep on sending until the end. After 300 seconds, 20 new sources start to send
to a different single destination. 200 seconds later these stop again. All sources
send four 64 byte packets per second. Fig. 9 shows, for one communication
session,how the end-to-end delay, averaged per 10 seconds, evolves throughout
the simulation. The arrival of 20 new sessions after 300 seconds leads to a long
period of unstable behavior. The congestion caused by the increased data traf-
fic not only leads to longer queueing times, but also to higher interference that
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can cause transmissions to fail. Since failed transmissions are usually treated as
link failures by routing algorithms, they often trigger strong reactions. As can
be seen in the figure, AntHocNet deals with this challenge in a much smoother
way than AODV. After the end of the 20 sessions, at second 500, the situation
stabilizes again, but faster for AntHocNet than for AODV.
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Fig. 9. Evolution of the end-to-end delay over the course of a test run

4.5 Conclusions

In this section we have described AntHocNet, a novel ACO routing algorithm
for MANETs. It is a hybrid algorithm that combines reactive route setup with
proactive route maintenance and exploration. The main learning mechanism
based on path sampling using ant agents is supported by a lightweight informa-
tion bootstrapping process. Link failures are also dealt with in a hybrid way:
proactive protection is provided by the use of multiple paths, whereas reactive
mechanisms like route repair and link failure notification messages are used to en-
hance the adaptivity in the highly mobile MANET environments. In simulation
tests, we show that AntHocNet can outperform AODV in different environments,
and for different evaluation measures. A detailed examination of the evolution
of the algorithm’s performance during the course of an experiment illustrates its
adaptivity.

5 Conclusion

In this paper we have presented a number of recent algorithms for failure location
and restoration in both IP-over-fiber and wireless ad-hoc networks.

For failure location we use a Maximum Likelihood inference to correct error
alarms. This approach, together with a standard set-cover heuristic, turned out
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to handle false and missing alarms far better than the techniques proposed to
date.

For failure restoration in IP-over-fiber networks we described two different al-
gorithms, SMART and FastSurv. Both are much faster and more scalable than
any solution proposed to date. Moreover, each approach has a number of possi-
ble extensions. SMART provides us with a novel method of formal verification
of the existence of a survivable mapping and a tool tracing and repairing the
vulnerable areas of the network, whereas FastSurv can be easily adapted to any
set of real-life requirements such as capacity constraints.

In wireless ad-hoc networks the connectivity changes so quickly, that failure
restoration is in fact equivalent to a highly adaptive routing algorithm. Therefore
we addressed this problem separately, and proposed AntHocNet - a routing algo-
rithm inspired by Ant Colony Optimization. AntHocNet outperforms standard
algorithms in terms of efficiency and scalability.
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