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Survivable Routing of Mesh Topologies in
IP-over-WDM Networks by Recursive Graph

Contraction
Maciej Kurant and Patrick Thiran

Abstract— Failure restoration at the IP layer in IP-over-WDM
networks requires to map the IP topology on the WDM topology
in such a way that a failure at the WDM layer leaves the IP
topology connected. Such a mapping is called survivable. Finding
a survivable mapping is known to be NP-complete, making it
impossible in practice to assess the existence or absence of such
a mapping for large networks. (i) We first introduce a new
concept of piecewise survivability, which makes the problem much
easier in practice (although still NP-complete), and allows us to
formally prove that a given survivable mapping does or does
not exist. (ii) Secondly, we show how to trace the vulnerable
areas in the topology, and how to strengthen them to enable
a survivable mapping. (iii) Thirdly, we give an efficient and
scalable algorithm that finds a survivable mapping. In contrast
to the heuristics proposed in the literature to date, our algorithm
exhibits a number of provable properties (e.g., it guarantees the
piecewise survivability) that are crucial for (i) and (ii).

Index Terms— Optical communication, wavelength division
multiplexing, survivability, graph theory

I. INTRODUCTION

GENERALLY, there are two approaches for providing
survivability of IP-over-WDM networks: protection and

restoration [1]. Protection uses pre–computed backup paths
applied in the case of a failure. Restoration finds dynamically
a new path, once a failure has occurred. Protection is less
resource efficient (the resources are committed without prior
knowledge of the next failure) but fast, whereas restoration is
more resource efficient and slower. Protection and restoration
mechanisms can be provided at different layers. IP layer (or
logical layer) survivability mechanisms can handle failures
that occur at both layers, contrary to WDM layer (or physical
layer) mechanisms that are transparent to the IP topology. It is
not obvious which combination (mechanism/layer) is the best;
each has pros and cons [2]. IP restoration, however, deployed
in some real networks, was shown to be an effective and cost–
efficient approach (see e.g., Sprint network [3]). In this paper
we will consider exclusively the IP restoration approach.

Each logical (IP) link is mapped on the physical (WDM)
topology as a lightpath. Usually a fiber is used by more than
one lightpath (e.g., in Sprint the maximum number is 25 [4]).
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Therefore a single physical link failure usually brings down a
number of IP links. With the IP restoration mechanism, these
IP link failures are detected by IP routers, and alternative
routes in the IP topology are found. In order to enable this,
the IP topology should remain connected after a failure of a
physical link; this in turn may be guaranteed by an appropriate
mapping of IP links on the physical topology. We call such a
mapping a survivable mapping.

By lack of space, in this paper we consider only link
failures. All the results are easily extended to node failures
(see [5]) and multiple failures (see [6]). First, we are interested
in the existence of a survivable mapping for a given pair of
logical and physical topologies. There is some work on the
topic in the literature, but it assumes ring topologies at the
physical [7], [8] or the logical [9], [10] layer. We study the ex-
istence of a survivable mapping for general mesh topologies at
both layers, which is foreseen to be the main future topology.
To date, the only general method verifying the existence of
a survivable mapping is an exhaustive search (or equivalent)
run for the entire topology. Due to NP-completeness of the
survivable mapping problem [9], the exhaustive approach is
not realizable in practice for the topologies larger than a few
nodes. To bypass this difficulty, we introduce a new type of
mapping, which preserves the survivability of some subgraphs
(‘pieces’) of the logical topology; we call it a piecewise
survivable mapping. The formal analysis of the piecewise
survivable mapping shows that a survivable mapping of the
logical topology on the physical topology exists if and only
if there exists a survivable mapping for a contracted logical
topology, that is, a logical topology where a specified subset
of edges is contracted (contraction of an edge amounts to
removing it and merging its end-nodes). This new result
substantially simplifies the verification of the existence of
a survivable mapping. Of course, the problem remains NP-
complete, but this simplification allows us, for the first time,
to solve many instances of moderate and large topology size,
which makes it applicable in practice.

A second application of a piecewise survivable mapping is
tracing the vulnerable areas in the network and pointing where
new link(s) should be added to enable a survivable mapping.
To the best of our knowledge, this is also a novel functionality.

Third, the formal analysis reveals an easy way to incre-
mentally expand the survivable pieces in a piecewise sur-
vivable mapping. This leads us to an efficient and scalable
algorithm that searches for a survivable mapping, which
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we call SMART (“Survivable Mapping Algorithm by Ring
Trimming”). SMART is different from the algorithms that
solve this problem proposed in the literature. These algorithms
can be divided into two groups: (i) greedy search based on
Integer Linear Programming (ILP), and (ii) heuristics. The ILP
solutions can be found for example in [9], [11], but they lead to
an unacceptably high complexity, even for networks of small
size (few tens of nodes). The second approach uses various
heuristics, such as Tabu Search [11], [12], [13], Simulated
Annealing [2] and others [1], [14]. If a heuristic fails, nothing
can be claimed about the existence of a survivable mapping.
We introduced the SMART algorithm in [15] as such a heuris-
tic, without any formal analysis. Simulations in [15] showed
that SMART is efficient and scales very well. The concept of
piecewise survivability introduced in the present paper makes
the formal analysis of SMART possible. It revealed that the
SMART algorithm actually opens a third group (iii) in the
family of algorithms that search for a survivable mapping.
One of our key results is that, contrary to the heuristics
(ii), SMART never misses a solution if there is one. This is
because, even if SMART does not fully converge, the mapping
it returns is piecewise survivable. This mapping is defined for
a subset of logical links and leaves the remaining logical links
unmapped. We prove that if a survivable solution exists, the
remaining unmapped logical links can be still mapped in a
way ensuring the survivability of the resulting full mapping.

This paper extends the results of our conference paper [5] in
two directions. First, we extend and restructure the theoretical
part to make it more complete and self-contained. In particular,
we added some results on the convergence of the SMART
algorithm (see Theorems 2 and 5). Second, the entire analysis
in [5] assumes unlimited capacities of optical fibers. In this
paper we first present the general results without capacity
constraints, and then we discuss the applicability of our
theorems and algorithms in the presence of limited capacities;
the results are grouped in Section VIII.

The organization of this paper is the following. Section II
introduces notations and formalizes the problem in the absence
of capacity constraints. Section III gives three fundamental
theorems. For better readability all proofs are moved to the
Appendix. Section IV introduces the SMART algorithm and
discusses its properties. Section V describes our implementa-
tion of SMART. Section VI discusses a number of possible
applications of SMART. Section VII presents the simulation
results. Section VIII introduces the capacity constraints to the
analysis. Finally, Section IX concludes the paper.

II. NOTATION AND PROBLEM FORMULATION

A. Generalities

We use the formal notation of graph theory, mainly based on
[16]. However, we also introduce the stack of our definitions
well suited to the problems we tackle. The following general
notation is used:

• φ corresponds to the physical topology,
• L corresponds to the logical topology,
• C corresponds to the contracted topology (introduced

later in Section II-C),

• a, b, c, d, e . . . are used to denote edges/links,1

• u, v, w . . . are used to denote vertices/nodes,2

• p is used to denote a path, i.e., a sequence of edges,
where two consecutive edges have a common end-node.
We say that a node u is in a path p, u ∈ p, if u is an
end-node of at least one edge in p. A path p from vertex
v to vertex u will be denoted by pv,u.

Physical and logical topologies are represented by undi-
rected simple graphs: Gφ = (V, Eφ) and GL = (V, EL),
respectively. V is the set of vertices, Eφ and EL are the
sets of undirected edges. In reality, not every physical node
(i.e., optical switch) has an IP routing capability, which would
imply V φ ⊇ V L. All the the results in this paper hold for
V φ ⊇ V L, but for the sake of simplicity we have chosen to
keep V φ and V L identical (V φ ≡ V L ≡ V ).

B. Lightpath and Mapping

Definition 1 (Lightpath): A logical link eL is mapped on a
physical topology as a physical path pφ in such a way that pφ

connects the same two vertices in Gφ as eL connects in GL.
In optical networking terminology, such a physical path pφ

is called a lightpath. The failure of any physical link in pφ

breaks the lightpath and consequently brings down the logical
link eL. Note that, since we release the capacity constraints in
Sections II-VII, we do not have to consider the wavelengths
assigned to lightpaths and wavelength converters placement.

Definition 2 (Mapping): Let Pφ be the set of all possible
physical paths in the physical topology and A ⊂ EL be
a set of logical links. A mapping MA is a function MA :
A → Pφ associating each logical link from the set A with a
corresponding lightpath in the physical topology.

For some particular logical edge eL ∈ A, MA returns a
physical path pφ = MA(eL), pφ ∈ Pφ. For arguments beyond
A, MA is not defined. We also allow putting a set of logical
links Asub ⊂ A as an argument, which results in a set of
lightpaths MA(Asub) ⊂ Pφ. Similarly, taking as an argument
a logical path pL whose edges are in A, we obtain a set of
lightpaths MA(pL) ⊂ Pφ associated with the edges of pL.

Example 1: Fig. 1 illustrates the definitions given above.
In Fig. 1a the mapping MA is defined for the subset A of
logical links (marked in bold in the logical topology). For
example, we have MA(fL) = 〈dφ, bφ, gφ〉, which means that
the lightpath assigned for the logical edge fL consists of three
physical links. Fig. 1b presents a mapping defined for the
subset B, whereas the mapping MEL in Fig. 1c is defined for
all links of the logical topology EL = A ∪ B.

We will often deal with mappings of different subsets of
logical edges. Let A1, A2 ⊂ EL. For consistency, we always
require that:

for every eL ∈ A1 ∩ A2 : MA1(e
L) = MA2(e

L). (1)

The mappings MA1 and MA2 can be merged, resulting in a
mapping MA3 defined as follows

A3 = A1 ∪ A2 (2)

MA3(A3) = MA1(A1) ∪ MA2(A2). (3)

1The terms edge and link are used interchangeably
2The terms vertex and node are used interchangeably
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Fig. 1. Three mapping examples. We have four layers, from bottom to top: the physical topology Gφ, the mapping M , the logical topology GL and
the contracted logical topology GC (only in (a)). In (a) the pairs

ˆ
GL

{aL,bL,cL}, MA

˜
and

ˆ
GL

{fL,gL,hL}, MA

˜
are survivable, and therefore the pair

ˆ
GL, MA

˜
is piecewise survivable. In (b) the mapping MB maps edge-disjointly the set B = {dL, eL} of two logical links. The contracted topology GC

in (a) is composed of these two links. Taking GC and MB together, we obtain the pair
ˆ
GC , MB

˜
, which is survivable. In (c) the pair

ˆ
GL, MEL

˜
is

survivable, that is MEL is a survivable mapping of the entire logical topology.

For convenience of notation, we will write (2) and (3) as
MA3 = MA1∪ MA2 .

C. Contraction and Origin

In the paper we will often use the graph operator of
contraction, which is illustrated in Fig. 2 and is defined as
follows:

Definition 3 (Contraction [16]): Contracting an edge e ∈
E of a graph G = (V, E) consists in deleting that edge and
merging its end–nodes into a single node. The result is called
the contraction of a graph G on an edge e (or simply a
contracted graph), and is denoted by GC = G↓e.
By extension, we also allow contracting a set of edges A ⊂ E,
resulting in a contracted graph GC = G ↓ A, obtained by
successively contracting the graph G on every edge of A. It
is easy to show that the order in which the edges of A are
taken to contraction, does not affect the final result.

Let G = (V, E), A ⊂ E and GC = (V C , EC) = G↓A.
Note that by construction EC = E\A. Therefore each edge
of GC can be found in G, as depicted in Fig. 2. This is
not always true for vertices. A vertex of V C may either
‘originate’ from a single vertex in G (like wC in Fig. 2), or
from a connected subgraph of G (like vC and uC ). We call
this relation an Origin(·).

Definition 4 (Origin): Let GC = G ↓ A. Now take a
subgraph GC

sub ⊆ GC . We say that Gsub = Origin(GC
sub),

contraction 
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 Origin(e) = e 
 Origin(vC) = ({u,v,w}, {a,b,c}) 
 Origin(uC) = ({y,z}, g) 
 Origin(wC) = x 
 Origin(({uC,wC}, {f,h})) = ({x,y,z}, {f,g,h}) 

Fig. 2. Contraction of a graph G on a set of edges A = {a, b, c, g}. The
origins of some elements of GC = G↓A are also shown (bottom).

if Gsub is the maximal subgraph of G that was transformed
into GC

sub by the contraction of A in G.

According to this definition, the result of the Origin(·)
function is the maximal subgraph transformed in its argument.
For example, we could say that in Fig. 2, the vertex z ∈ G
was transformed into the vertex uC ∈ GC , however z �=
Origin(uC) because it is not the only element that was
transformed into uC by contraction. The maximal subgraph
in this case is ({y, z}, g) = Origin(uC).
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D. Survivability and Piecewise Survivability

Let MEL be a mapping of the logical topology GL on the
physical topology Gφ. Assume that a physical link eφ fails.
Each logical link in GL using eφ in its mapping (lightpath)
will then be cut. This may cause a disconnection of GL. If,
after any single physical link failure, the graph GL remains
connected, then the pair

[
GL, MEL

]
is declared survivable.

We extend this property to a family of graphs constructed
from the logical topology in the following definition:

Definition 5 (Survivability): Let GL = (V, EL), A ⊂ EL

and GC = (V C , EC) = GL ↓A. Take any connected subgraph
GC

sub = (V C
sub, B) of the contracted topology GC , and let MB

be a mapping of the set B of logical links. The pair
[
GC

sub, MB

]
is survivable if the failure of any single physical link eφ does
not disconnect the graph GC

sub.

A direct consequence of Definition 5 is that if
[
GC

sub, MB

]
is survivable, then

[
GC

sub, MB′
]

is also survivable, for any
B ⊂ B′ ⊆ EL.
In Definition 5, GC

sub represents a large family of graphs
obtained from the logical topology. If A = ∅, then GC = GL

and GC
sub is any connected subgraph of GL (including GL

itself). If A �= ∅, then GC
sub is any connected subgraph of

GL↓A. The different instances of GC
sub and survivable pairs are

given in Fig. 1 and described in the following three examples:

Example 2: It is easy to check that in Fig. 1c the pair[
GL, MEL

]
is survivable.

Example 3: In Fig. 1a, let GL
{aL,bL,cL} be the subgraph of

GL defined by the edges aL, bL, cL and their end-vertices. The
pair

[
GL

{aL,bL,cL}, MA

]
is survivable, because the failure of

any physical link does not disconnect GL
{aL,bL,cL}. Similarly,

the pair
[
GL

{fL,gL,hL}, MA

]
is also survivable.

Example 4: In Fig. 1a, the contracted topology GC is the
result of the contraction of the logical topology on the set
A, i.e., GC = GL↓A. Take GC

sub = GC . It consists of two
logical links, dL and eL. A possible mapping of the set B =
{dL, eL} is the mapping MB shown in Fig 1b. Consider the
pair

[
GC , MB

]
; it is survivable, because a single physical link

failure cannot bring down both dL and eL at the same time,
hence GC remains connected.

Definition 6 (Piecewise Survivability): Let MA be a map-
ping of a set A ⊂ EL on the physical topology. The
pair

[
GL, MA

]
is piecewise survivable if, for every vertex

vC of the contracted logical topology GL ↓ A, the pair[
Origin(vC), MA

]
is survivable.

In contrast to survivability, piecewise survivability is defined
only for the entire logical topology GL. We will say that a
mapping MA is (piecewise) survivable, if the pair

[
GL, MA

]
is (piecewise) survivable (i.e., we take GL as the default
topology).

Example 5: In Fig. 1a, the pair
[
GL, MA

]
is piecewise

survivable. To prove it, we have to show that for ver-
tices uC and vC of GL ↓A, the pairs

[
Origin(uC), MA

]
and

[
Origin(vC), MA

]
are survivable. Here we have

Origin(uC) = GL
{aL,bL,cL} and Origin(vC) = GL

{fL,gL,hL}.
We have shown in Example 3 that each of these two graphs
forms a survivable pair with MA.

III. FUNDAMENTAL PROPERTIES OF SURVIVABLE AND

PIECEWISE SURVIVABLE MAPPINGS

In this section we prove three useful properties of survivable
and piecewise survivable mappings. We will often use them
in the following sections.

A. The Expansion of Survivability

Given a piecewise survivable mapping, the logical topology
can be viewed as a set of survivable ‘pieces’. This is a general
property of a piecewise survivable mapping. (For instance
in Example 5, given the piecewise survivable mapping MA,
there are two survivable ‘pieces’ of GL: GL

{aL,bL,cL} ⊂ GL

and GL
{fL,gL,hL} ⊂ GL.) The following theorem enables us

to merge some of these pieces, resulting in a single large
survivable piece.

Theorem 1 (Expansion of Survivability):
Let MA be a mapping of a set of logical edges A ⊂ EL

on the physical topology Gφ, such that the pair
[
GL, MA

]
is

piecewise survivable. Let GC = GL↓A. Take any subgraph of
GC , call it GC

sub = (V C
sub, B). Let MB be a mapping of the set

B of edges of GC
sub on Gφ. If the pair

[
GC

sub, MB

]
is survivable

then the pair
[
Origin(GC

sub), MA ∪ MB

]
is also survivable.

Proof: See Appendix.

The following example illustrates this theorem.

Example 6: In Example 5 we have shown that in
Fig. 1a, the pair

[
GL, MA

]
is piecewise survivable.

Take GC
sub = GC = GL↓A and take MB as in

Fig. 1b. From Example 4, we know that the pair[
GC , MB

]
is survivable. Now, by Theorem 1, the pair[

Origin(GC), MA∪MB

]
=

[
GL, MA∪MB

]
is survivable.

So beginning from the piecewise survivable mapping MA

and adding the mapping MB, we merged the two survivable
pieces GL

{aL,bL,cL} and GL
{fL,gL,hL} into a single, large,

survivable piece. In this example the resulting survivable
piece is the entire logical topology GL. The full mapping
MA∪MB = MEL is shown in Fig. 1c.

B. Invariance of Survivability Under Contraction

Theorem 2 (Invariance of Survivability Under Contraction):

Let GC
sub = (V C

sub, B) be a subgraph of some contracted
topology GC . If MB is a mapping such that the pair[
GC

sub, MB

]
is survivable, then for any set A ⊂ B of logical

links the pair
[
GC

sub↓A, MB

]
is also survivable.

Proof: See Appendix.

In other words, Theorem 2 says that if we can map in a sur-
vivable way some subgraph GC

sub of the logical or contracted
logical topology, then the subgraph obtained by contracting
some additional set A of edges can always be mapped in a
survivable way, whatever the choice of A.

Example 7: Take GC
sub =GL and MB =MEL as in Fig. 1c.

We know that the pair
[
GL, MEL

]
is survivable. Theorem 2

implies that for any set of logical edges A ⊂ EL the pair[
GL↓A, MEL

]
is also survivable. In particular, for the set A

as defined in Fig. 1a,
[
GL↓A, MEL

]
is survivable, which was

shown in Example 4 (MB ⊂ MEL).
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Note that we do not impose any requirements (such as e.g.,
preserving piecewise survivability) on the contracted edges A.
Moreover, we do not have any restrictions on what happens
with the rest of the contracted topology, i.e., in GC \ GC

sub.

C. The Existence of a Survivable Mapping

In general, for a given pair of physical and logical topolo-
gies, it is very difficult to verify the existence of a survivable
mapping. A heuristic approach, if it fails, does not give any
answer. The ILP approach or an exhaustive search could
provide us with the answer, but due to their high computational
complexity their application is limited to the topologies of sev-
eral nodes. The following theorem shows how this verification
problem can be substantially reduced:

Theorem 3 (Existence of a survivable mapping):
Let MA be a mapping of a set of logical edges A ⊂ EL, such
that the pair

[
GL, MA

]
is piecewise survivable. A survivable

mapping M surv
EL of GL on Gφ exists if and only if there exists

a mapping M surv
EL\A of the set of logical links EL\A on Gφ, such

that the pair
[
GL↓A, M surv

EL\A
]

is survivable.

Proof: See Appendix. The proof uses Theorems 1 and 2.

The following example illustrates this theorem.

Example 8: In Fig. 1 delete edge bφ from the physical
topology Gφ. Now, for the logical topology GL and the
physical topology Gφ \{bφ}, a survivable mapping does not
exist. To prove it, note that we can still find a mapping MA

of GL on Gφ\{bφ} that is piecewise survivable. For instance,
we can take MA defined as follows: aL �→ (cφ), bL �→ (aφ),
cL �→ (dφ, eφ, fφ, gφ), fL �→ (dφ, cφ, aφ, gφ), gL �→ (fφ)
and hL �→ (eφ). However, the remaining two logical links
dL and eL cannot be mapped edge-disjointly on Gφ \{bφ}.
Therefore no survivable mapping M{dL,eL} of the contracted
logical topology GL↓A on Gφ\{bφ} exists. Consequently, by
Theorem 3 we know that no survivable mapping of GL on
Gφ\{bφ} exists, which was to be proved. Note that to prove
it, we only considered the two-edge topology GL↓A instead of
the entire GL, which greatly simplified the problem. Clearly,
the larger the set A, the more we benefit from Theorem 3.

IV. THE SMART ALGORITHM

In this section we present an algorithm that searches for
a survivable mapping, which we call SMART. It maps the
topology part by part, gradually converging to a final solution.
By formal graph theoretic analysis, we prove that if SMART
converges completely, a survivable mapping is found. Oth-
erwise, when the algorithm terminates before its complete
convergence, the returned mapping is piecewise survivable and
no survivable solution exists.

A. The pseudo-code of SMART

Step 1 Begin from the full logical topology GC = GL, and
an empty mapping MA = ∅, A = ∅;

Step 2 Take some subgraph GC
sub = (V C

sub, B) of GC and
find a mapping MB , such that the pair

[
GC

sub, MB

]
is survivable. IF no such pair exists, THEN RETURN
MA AND GC = GL↓A, END.

Step 3 Update the mapping by merging MA and MB , i.e.,
MA := MA ∪ MB;

Step 4 Contract GC on B, i.e., GC := GC↓B;
Step 5 IF GC is a single node, THEN RETURN MA, END.
Step 6 GOTO Step 2

The SMART algorithm starts from an empty mapping
MA = ∅. At each iteration it maps some set B of logical
links (Step 2), and extends the mapping MA by MB (Step 3).
Meanwhile, the contracted topology GC gradually shrinks
(Step 4).

B. The Correctness of the SMART Algorithm

We declare that:
• SMART converges if the contracted topology GC con-

verges to a single node. We prove later in Corollary 1, that the
mapping MA returned in step 5 is then a survivable solution;
• SMART does not converge if SMART terminates before

GC converges to a single node, i.e., in Step 2. We prove
below in Theorem 4 that the mapping MA returned in Step 2
piecewise survivable. Moreover, we show in Corollary 1 that
in this case a survivable solution does not exist. The graph
GC = GL↓A (also returned in Step 2) is called the remaining
contracted logical topology as it consists of unmapped logical
links EL\A.

Theorem 4 (SMART’s piecewise survivability):
After each iteration of the SMART algorithm, the pair[
GL, MA

]
is piecewise survivable.

Proof: See Appendix.

Theorem 4 leads us to the following important property of the
SMART procedure:

Corollary 1 (SMART’s Convergence):
The SMART algorithm returns a single node contracted topol-
ogy GC , if and only if there exists a survivable mapping of
the logical graph GL on the physical graph Gφ. In this case
the returned mapping MA is survivable.

Proof: See Appendix.

GC may converge to a single node topology with self-loops;
they form a set of remaining unmapped logical links EL\A.
However, this does not affect the result, because the links of
EL\A may be mapped in any way (e.g. shortest path) to obtain
a full survivable mapping MEL .

C. The Order of a Sequence of Subgraphs

Recall that in Step 2 of the SMART algorithm we take some
subgraph GC

sub = (V C
sub, B) of the contracted topology GC .

We do not specify which subgraph to take; if there are more
candidates GC

sub that meet the condition given in Step 2 (which
is usually the case), we are free to choose any of them. This
raises a natural question: How does the choice of GC

sub affect
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the convergence of the SMART algorithm? In the following
theorem we show that this choice does not affect the outcome
of the SMART algorithm.

Theorem 5 (SMART’s Uniqueness):
The contracted topology GC

min (excluding self-loops) returned
by SMART is unique.

Proof: See Appendix.

V. IMPLEMENTATION - SMART-H

In the previous section we have proposed a general pro-
cedure, called SMART, for which we have proved a number
of important properties. In practice, however, an exact imple-
mentation of SMART (as described by the pseudo-code in
Section IV-A) is not feasible, because Step 2 is in general an
NP-complete problem. For this reason, for large topologies
we use a heuristic to solve Step 2. We will refer to the
SMART procedure that takes use of any heuristic in Step 2 as
“SMART-H.” In this section we first discuss which theoretical
results carry over from SMART to SMART-H. Next, we give a
simple and effective example of a heuristic for solving Step 2.

A. Which theoretical results hold for SMART-H?

With a heuristic used to solve Step 2, SMART-H can
terminate in Step 2 not only if a pair

[
GC

sub, MB

]
does not

exist, but also if our heuristic was not able to find one.
However, most of the theoretical results obtained for SMART
in Section IV carry over to SMART-H and can be successfully
applied as we show in Sections VI and VII. In particular:

• Theorem 4 holds.

• Corollary 1 holds only in one direction: If SMART-H
converges, then the returned mapping is survivable (see Proof
of Corollary 1). Otherwise, the returned mapping is piecewise
survivable (by Theorem 4), but a survivable solution might
still exist. However, the piecewise survivability of the returned
mapping can be effectively exploited to verify the existence
of a survivable solution, as we demonstrate in Section VI-A.

• Theorem 5 does no longer hold. In practice, however, it
is highly probable that if our heuristic for Step 2 can find
a survivable mapping of some GC

sub then it will also find a
survivable mapping of its contracted version GC

sub ↓A. (For
instance, it is harder to map disjointly all edges of a cycle,
than only a subset of them.) With this property, distinct runs of
SMART-H converge to the same contracted topology. We have
found an excellent confirmation of this claim in simulations.
We have tested many pairs of physical and logical topologies
for which a survivable mapping does not exist (so GC

min is
always larger than a one-node topology). To ensure a variety
of sequences of cycles considered in Step 2 of SMART-H, we
randomly permute every time the list of candidates. Even with
this approach, for a given pair of topologies, more than 99%
of distinct runs of SMART-H resulted in the same contracted
topology.

B. A heuristic for Step 2 of SMART-H

In our implementation of Step 2 of SMART-H we take the
graph GC

sub in the form of a cycle. Thus we will system-
atically contract cycles (or ‘rings’) found in the contracted

Fig. 3. Applications of the SMART-H algorithm.

logical topology, which explains the name of the algorithm
(“Survivable Mapping Algorithm by Ring Trimming”). GC

sub

in the form of a cycle requires the mapping MB (Step 2) to
be edge-disjoint. (Otherwise, if the same physical link eφ is
used by two or more logical links in GC

sub, a failure of eφ will
bring these links down, disconnecting the cycle GC

sub.) Since
finding it is equivalent to the NP-complete edge-disjoint paths
problem [17], we applied a simple heuristic, as follows. Let
each physical edge have a weight (these weights will be used
only by this heuristic) that is initially set to 1. At each iteration,
map the logical links from GC

sub with the shortest path. If no
physical link is used more than once, the disjoint solution is
found. Otherwise, the weight of each physical link used more
than once is increased, and a new iteration starts. After several
unsuccessful iterations the heuristic fails.

VI. SMART-H APPLICATIONS

We can apply the SMART-H algorithm in a number of ways.
The general scheme can be found in Fig. 3. The option we
choose depends on the nature of the results we want to obtain.
Specifically we can distinguish:

• the formal verification of the existence of a survivable
mapping,

• a tool tracing and repairing the vulnerable areas of the
network,

• a fast heuristic.
Note that the first two applications are specific to

SMART-H; no other heuristic proposed to date has this
property. We discuss each of the three applications separately,
in the following sections.

A. Formal Verification of the Existence of a Survivable Map-
ping (ExSearch and SepPath)

Run SMART-H to map a logical topology GL on the phys-
ical topology Gφ. If SMART-H converges, a survivable map-
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ping exists and is returned (see the comment on Corollary 1
in V-A). If SMART-H does not converge, it returns a mapping
MA and a remaining contracted logical topology GL↓A.
What makes SMART-H very different from other heuristics
is that, by Theorem 4, the returned mapping MA is piecewise
survivable. This allows us to apply Theorem 3, which reduces
the task of verifying the existence of a survivable mapping
for the entire GL, to the same verification for GL↓A. This
property is a key feature of SMART-H: if there is a survivable
mapping of GL on Gφ, then SMART-H will never miss it,
because the set of the remaining logical links EL\A can be
still mapped in a way that preserves the survivability of GL↓A
(and hence of GL). In other words, no backtracking is needed
in order to assess if there exists a survivable mapping for
GL; we obtain exactly the same answer by studying GL↓A.
Although this verification is NP-complete for both GL and
GL↓A, in practice the size of GL↓A is often very small,
which makes the verification feasible. We use two methods
to verify the existence of a survivable mapping for GL↓A:

1) Exhaustive Search (ExSearch) uses exhaustive search
to find a survivable mapping of the contracted logical
topology GL↓A.

2) Separated Path check (SepPath) is defined as follows. If
the contracted logical topology GL↓A contains a path
pC such that all nodes on pC but the first and the last
ones, are of degree two, then clearly all the logical
links in pC must be mapped edge-disjointly to enable
survivability. Therefore the failure of an exhaustive
search for an edge-disjoint mapping of pC will prove
impossibility. Otherwise, nothing can be concluded.

Compared to an unrestricted exhaustive search, the exhaustive
search respecting the edge-disjointness constraint is relatively
easy (although still NP-complete). For this reason SepPath is
better suited to larger topologies than ExSearch.

The implementations that first use SMART-H, and then
apply ExSearch or SepPath to the returned contracted
topology GL↓A, will be called SMART-H + ExSearch and
SMART-H + SepPath, respectively. We test the efficiency of
these approaches in Section VII-B; we apply them to verify
the existence of a survivable mapping for various topologies
in Section VII-C.

B. A Tool Tracing and Repairing the Vulnerable Areas of the
Network

We have developed two methods to verify the existence of
a survivable mapping: ExSearch and SepPath. Once we know
that a particular pair of physical and logical topologies cannot
be mapped in a survivable way, a natural question is to modify
the topologies to enable such a mapping. Where should a new
link be added? The SMART-H algorithm helps us in answering
this question. Run SMART-H and wait until it terminates.
The remaining contracted logical topology GL↓A and the
piecewise-survivable mapping MA are returned. Choose at
random two nodes uC , vC in GL↓A and pick any two nodes
u, v in GL, such that u ∈ Origin(uC) and v ∈ Origin(vC).
Now connect u and v with an additional logical/physical link
(remember that we assume identical vertices at both layers).
If this link already exists, repeat the procedure.

b)  f-lattice (2-node-connected) a) NSFNET 
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12 

Fig. 4. Physical topologies used in simulations. (a) NSFNET; (b) f –lattice
constructed from full square lattice by deleting fraction f of links, while
preserving 2–node–connectivity (here f � 0.25).

The simulation results in Section VII-D discuss the effi-
ciency of this approach.

C. A Fast Heuristic

With SMART-H, a survivable mapping is found orders of
magnitude more rapidly and usually more often than with
other heuristics proposed in the literature to date (see [15]).

VII. SIMULATION RESULTS

In this section we test in simulations the novel applications
of SMART-H, i.e., these described in Section VI-A and VI-B.
The performance of SMART-H as a fast heuristic (see VI-C)
has already been evaluated in [15]; we do not repeat it here
due to space constraints.

A. Physical and Logical Topologies

In the simulations we use various topologies. A relatively
small physical topology is NSFNET (14 vertices, 21 edges)
presented in Fig. 4a. To imitate larger real-life physical topolo-
gies, we also generate square lattices in which a fraction f
of edges is deleted, as shown in Fig. 4b; we call them f -
lattices. The parameter f is often fixed to f = 0.3, which
resulted in an f -lattice with an average vertex degree slightly
smaller than that of NSFNET. As the IP graph is less regular
(for instance, there is no reason why it should be planar),
the logical topologies are 2-edge-connected random graphs of
various average vertex degree. (Clearly, 2-edge-connectivity of
both physical and logical topologies is a necessary condition
for the existence of a survivable mapping.)

B. ExSearch and SepPath Efficiency, and ‘Unknown Area’

In Section VI-A we defined two methods of verification of
the existence of a survivable mapping, ExSearch and SepPath.
In this section we examine the benefits of these approaches.

The physical topology is an f -lattice with the parameter
f = 0.3. The logical topology is a random graph with average
vertex degree 〈kL〉 = 4. For each number of nodes N , we
generate a number of physical/logical topology pairs, and keep
the first 1000 for which SMART-H does not converge. In
Fig. 5a, we present the cumulative distribution function (CDF)
of the number of logical links in the remaining contracted
logical topology GL↓A returned by the algorithm. We can
see that, if SMART-H does not converge, the size of GL↓A is
usually relatively small. For instance, for N = 36, SMART-H



KURANT and THIRAN: SURVIVABLE ROUTING OF MESH TOPOLOGIES IN IP-OVER-WDM NETWORKS 929

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

C
um

ul
at

iv
e

di
st

ri
bu

tio
n

Number of remaining logical links

(a) Size of remaining contracted topology

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

N=16, ExSearch

C
um

ul
at

iv
e

di
st

ri
bu

tio
n

Time [s]

(b) Run-times of ExSearch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.3 2.4 2.5 2.5 2.7 2.8 2.9

Unknown

Fr
ac

tio
n

of
m

ap
pe

d
to

po
lo

gi
es

Average node degree 〈kL〉
(c) Random graph on NFSNET

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Unknown

Fr
ac

tio
n

of
m

ap
pe

d
to

po
lo

gi
es

f - parameter of f -lattice

(d) Random graph on f -lattice, N = 49
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(e) Random graph on f -lattice, f = 0.3
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Fig. 5. Survivability under various scenarios. Parameters: N–number of nodes; f–parameter of the f -lattice physical topology; 〈kL〉–average node degree
of the logical topology. (a) CDF of the number of logical links in the remaining contracted logical topology. f = 0.3, N = 16 . . . 100; (b) CDF of
ExSearch times with and without prior contraction by SMART-H. f = 0.3, N = 16 . . . 100. (c) Random graph logical topologies mapped on NSFNET.
N =14, 〈kL〉=2.3 . . . 2.9; (d) Random graph logical topologies mapped on f -lattices. N = 49, f =0 . . . 0.35, 〈kL〉= 4; (e) Random graph logical
topologies mapped on f -lattices. N = 16 . . . 100, f = 0.3, 〈kL〉= 4; (f) Enabling survivability by introducing an additional link. Random graph logical
topologies mapped on f -lattices. N =16 . . . 100, f =0.3, 〈kL〉=4.

leaves six or fewer logical links out of the total number of
72, in about 80% of cases. Moreover, this property seems to
depend only slightly on the topology size.

Now we apply EsSearch and SepPath to the contracted
GL↓A returned by SMART-H. The distribution of run-times
of SMART-H + ExSearch is plotted in Fig. 5d. For N =
16, about 90% of topologies need less than 0.001 sec to
run SMART-H + ExSearch.3 Only very few need more than
0.1 sec. For comparison purposes, we also ran a complete
exhaustive search ExSearch without prior contraction by
SMART-H for N = 16. We observe the difference in run-
times of at least 7 orders of magnitude. Most of the runs
of the fully exhaustive search last more than 10000 seconds
(∼ 3 hours), the maximal time allowed in the simulations.
This limits the application of the full exhaustive search to the
topologies of a very small size.

Fig. 5d also exemplifies the tradeoff we faced in simula-
tions. On one hand, the SMART-H + ExSearch runs quickly
for the majority of the topologies, but on the other hand,
the remaining few topologies take orders of magnitude more
time. We observed the same phenomenon when applying the
SMART-H + SepPath verification method. Therefore we have
decided to use a strict, one minute stopping time. If neither
SMART-H + ExSearch nor SMART-H + SepPath finishes the
computation within 60 seconds, the question of the existence
of a survivable mapping is left unanswered. As the result, the
figures in the following sections display two curves: the lower
one is the percentage of survivable mappings found within
1 minute, the upper one is the percentage of logical topologies

3We implemented the all algorithms in C++ and ran it on a Pentium 4
machine.

proved to be unmappable in a survivable way within 1 minute.
The curves are separated by an ‘unknown area’ set in gray.

C. Survivability of Random Graphs on Various Physical
Topologies

It is interesting to see what fraction of randomly chosen
topologies can/cannot be mapped in a survivable way. To
the best of our knowledge, this is the first time these results
can be obtained in a reasonable time for moderate and large
topologies.

For a particular pair of physical and logical topologies, we
first apply the SMART-H algorithm. If SMART-H does not
converge, we try ExSearch and SepPath to verify the existence
of a survivable solution. Their run-times are restricted to the
‘one minute bound’, as explained in Section VII-B.

In Fig. 5c we present the results of the mapping of random
graph logical topologies on NSFNET. We vary the average
vertex degree 〈kL〉 of the logical graph; for each value of
〈kL〉 we generate 1000 topologies. Observe that the results
strongly depend on 〈kL〉.

In order to examine a larger spectrum of physical topologies
and topology sizes, in Figs. 5de we map a random graph log-
ical topology on the f -lattice physical topology. This time we
fix the average vertex degree of the logical topology 〈kL〉 = 4
and we vary the parameter f of the physical topology (Fig. 5d)
or the number of nodes N (Fig. 5e). We generated 1000
topologies for each parameter. Fig. 5d shows that the fraction
of topologies mappable in a survivable way decreases with
growing f . This was expected, because it is more difficult
to map the logical topology on a sparser physical graph. In
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Fig. 5e, the ‘unknown area’ quickly widens for N > 80
because of the ‘one minute bound’.

The dashed curves in Figs. 5cde show the fraction of
topologies mapped in a survivable way by SMART-H alone,
without being followed by ExSearch or SepPath. The dis-
tances between these curves and the mapping-impossible areas
are relatively small, which confirms the high efficiency of
SMART-H as a heuristic.

D. Introduction of an Additional Link

Another property of the SMART-H algorithm is the ability
to trace and repair the vulnerable areas of the network. In
particular, in Section VI-B we described a way to introduce
an additional logical or physical link to enable a survivable
mapping. In this section we verify the efficiency of that
approach.

We map random graph logical topologies on f -lattices and
vary N . For each N , we generate 1000 pairs of physical
and logical topologies, such that for each pair separately,
a survivable mapping does not exist. For each topology
pair, we add one logical or physical link with the help of
SMART-H, as described in Section VI-B. Next, the existence
of a survivable mapping is verified again, for this extended
pair of topologies. For comparison purposes we also simulate
a completely random placement of an additional link.

The results are shown in Fig. 5f. For better readability, we
do not include the ‘unknown area’, which lies above each
curve. The application of SMART-H enables a very efficient
placement of an additional logical link, which helps in 70% to
95% of cases (depending on N ). In contrast, the completely
random placement helps far less, and only for small topologies
- for larger N its efficiency becomes insignificant. This is
because only new logical links connecting different nodes in
GL↓A (i.e., different survivable pieces in GL) may help; the
larger the topology, the lower the probability of achieving it
with a completely random placement.

The efficiency of the placement of a new physical link
has a more random nature. Again, the SMART-H approach
helps, but its effect is not as significant nor dependent on
N , as in the case of logical links. This is because the
introduction of a new physical link within the same survivable
piece may also help. For instance, in Example 8, for the
logical topology GL and the physical topology Gφ\{bφ}, the
piecewise survivable mapping MA consists of two survivable
pieces {aL, bL, cL} and {fL, gL, hL}. We have shown that for
this pair of topologies a survivable mapping does not exist. But
it is enough to add the physical link bφ to make a survivable
mapping possible, as shown in Fig. 1c. Note that the link bφ

lies within the survivable piece {aL, bL, cL}.

VIII. CAPACITY CONSTRAINTS

The SMART approach described in this paper is a powerful
tool for studying the survivability of two-layer systems (such
as IP-over-WDM) from a topological perspective. Therefore,
as in the approaches in [9], [12], we have assumed infinite
capacities (number of wavelengths) on each physical fiber.
This has pros and cons. On one hand, this makes ‘negative
results’ more general: if we prove that a survivable mapping

does not exist for a particular pair of physical and logical
topologies with infinite physical capacities, then this proof
holds for any combination of finite capacities. On the other
hand, a ‘positive result’ (i.e., a survivable mapping) found for
infinite capacities is not necessarily applicable to a scenario
with given capacity constraints.

In this section we show that SMART, although primarily
devised to tackle purely topological aspects of the survivability
problem, can also incorporate some additional real-life con-
straints, which makes our approach an interesting alternative
for the heuristics available in the literature.

We first review the theorems given in this paper. Assume
that the capacity constraints are respected at every moment.
This means, for example, that in Step 2 of the SMART
algorithm the pair

[
GC

sub, MB

]
must be not only survivable,

but that the resulting mapping MA ∪MB (Step 3) should not
exceed the capacity of any physical link. With this assumption
it is easy to see that Theorems 1 and 4 hold. Corollary 1
holds only in one direction, i.e., if the contracted topology
GC converges to a single node then the underlying mapping
is survivable and capacity constraints are not violated. Un-
fortunately, Theorems 2, 3, and 5 do not hold, because their
proofs implicitly require unlimited capacities of physical links.
Therefore the SMART algorithm cannot be used to verify
the existence of a survivable mapping respecting capacity
constraints; its functionality is reduced to that of a pure
heuristic. In the reminder of this section we evaluate the
effectiveness and speed of this heuristic.

In the implementation of the SMART algorithm with the
capacity constraints (called “SMART-C”) we have exploited
the following idea. First, we construct a “light” survivable
mapping that uses relatively few logical links. This is achieved
by accepting in Step 2 only the mappings that are not signif-
icantly longer than their shortest path counterpart. Next, we
map the remaining logical links trying to satisfy the capacity
constraints, instead of applying the shortest path mapping
suggested in Section IV.

As a benchmark, we take one of the most efficient and
widely used heuristic to solve a survivable mapping problem,
Tabu Search [12], [18], [13], [11]. We have followed the
implementation given in [18]; it is a version of [12] that
takes the capacity constraints into account. We refer to this
algorithm as Tabu98.

We compare SMART-C with Tabu98 in Fig. 6. On one hand,
Tabu98 always finds slightly better solutions than SMART-C
- on average Tabu98 needs several percent smaller physical
link capacities to succeed (see Fig. 6b). On the other hand, the
comparison of the run–times of the examined algorithms (see
Fig. 6a) reveals a big difference that grows with the network
size to several orders of magnitude. These results are not
surprising. At every iteration, Tabu98 examines the mapping
of the entire logical topology, whereas SMART-C processes
only a small portion of it. This gives Tabu98 a global view
and results in a slightly better routing of lightpaths, but at the
very significant cost of speed and scalability. Therefore, with
finite link capacities, the two approaches are complementary.
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Fig. 6. Survivability with capacity constraints: SMART-C vs. Tabu98. Two–
edge–connected random logical topologies of average node degree 〈kL〉 = 4
are mapped on the f -lattice physical topology, with f = 0.3. The size of
topologies ranges from N = 16 to 100. For each value of N we generate
500 topology pairs and run SMART-C and Tabu98 until they succeed (i.e.,
find a survivable mapping that meets the capacity constraints) or the maximum
number of iterations is reached. For the plots we took only the cases where
both SMART-C and Tabu98 succeeded (Tabu98 succeeded less often then
SMART-C). All fibers in physical topology have the same capacity, chosen
separately for every pair of topologies. For every pair of topologies we
compare SMART-C and Tabu98 with respect to two metrics: (a) (log-
log) Comparison of run-times Tsmart of SMART-C with run-times Ttabu

of Tabu98. We fix the capacities of the physical links to the lowest value
Csmart for which SMART-C succeeds. Tabu98 is run using the same capacity
Csmart. (b) (log-lin) Comparison of minimal capacities. We compare the
value Csmart with the minimal value Ctabu of capacities for which Tabu98
succeeds. In (b) the run-times are ignored. In both figures, all points are the
medians over all topology pairs taken into account; the confidence interval
for medians are computed at 0.95 confidence level.

IX. CONCLUSION

In this paper we defined a piecewise survivable mapping
which preserves the survivability of some subgraphs of the
logical topology. The formal analysis of the piecewise sur-
vivable mapping enabled us to specify the necessary and
sufficient conditions for the existence of a survivable mapping.
This has led us to the SMART algorithm that is guaranteed
to converge to a survivable mapping if and only if it exists.
As one iteration of SMART is an NP-complete problem,
we adapted it by using a heuristic, which results in the
SMART-H algorithm. Most of the theoretical results obtained
for SMART carry over to SMART-H, which makes the latter
a practical tool that substantially simplifies the verification of
the existence of a survivable mapping. A second application
of SMART-H is tracing vulnerable areas in the network
and pointing where new link(s) should be added to enable
a survivable mapping. Finally, SMART-H can serve as an
efficient and scalable heuristic that searches for a survivable
mapping. To conclude, the formal analysis of the piecewise
survivable mapping gives us a powerful tool to designing,
diagnosing and upgrading the topologies in IP over WDM
networks.

X. APPENDIX

In this section we prove all Theorems introduced before. For
this purpose we use the following definition of survivability,
equivalent to Definition 5.

Definition 7 (Survivability): Let GL = (V, EL), A ⊂ EL

and GC = (V C , EC) = GL ↓A. Take any connected subgraph
GC

sub = (V C
sub, B), B ⊆ EC , of the contracted topology GC ,

and let MB be a mapping of the set B of logical links. The

uC

wC

vC

u

Origin(uC)

Origin(wC)

v=Origin(vC)

GL

GL
sub

GC

GC
sub

pC
uC ,vC

path

pL
u,v

Fig. 7. Illustration of proof of Theorem 1. A first portion of the path pL
u,v

is the path pC
uC ,vC found in GC

sub. Next it is completed, where necessary,

with the patches found in origins of the nodes of pC
uC ,vC .

pair
[
GC

sub, MB

]
is survivable if for any physical link eφ and

for any two vertices u, v ∈ V C
sub, there exists a path pC

u,v in
GC

sub between vertices u and v, such that eφ /∈ MB(pC
u,v).

(Note that every path in the contracted topology, e.g., pC
u,v,

actually consists of logical links.)

Proof of Theorem 1: (Please refer to Fig. 7.)
First note that since GC = GL ↓A, no logical edge from the
set A can be found in GC , which implies that A ∩ B = ∅.
Therefore the operation MA ∪MB is always well defined, as
in (2) and (3).
Let MA∪B = MA∪MB and GL

sub = Origin(GC
sub). We have

to prove that the pair
[
GL

sub, MA∪B

]
is survivable. Take any

single physical link eφ and two vertices u, v ∈ GL
sub. According

to Definition 7 we have to show that there exists a path pL
u,v in

GL
sub such that eφ /∈ MA∪B(pL

u,v). The path pL
u,v is constructed

in two steps, (i) and (ii).
(i) A first portion of pL

u,v is found in the contracted graph GC

(recall that GC consists of logical edges), as follows. Call
uC , vC ∈ V C

sub the vertices in GC
sub = (V C

sub, B) whose origins
contain u and v, respectively, i.e., such that u ∈ Origin(uC)
and v ∈ Origin(vC). Find a path pC

uC ,vC in GC
sub, such that

eφ /∈ MB(pC
uC ,vC ). This is always possible since the pair[

GC
sub, MB

]
is survivable. We take pC

uC ,vC as the first portion
of pL

u,v.

(ii) We now turn our attention to the origins of vertices in
the path pC

uC ,vC . Take any two consecutive edges aL and
bL of pC

uC ,vC , and let wC be their common end–node in
GC

sub. If Origin(wC) is not a single node in GL
sub, then

aL and bL might not have a common end–node in GL
sub.

However, by piecewise survivability of
[
GL, MA

]
, the pair[

Origin(wC), MA

]
is survivable. Therefore, if we denote

respectively by va, vb ∈ Origin(wC) the end–nodes of aL

and bL, that belong to Origin(wC), we can find a logical
path pL

va,vb
in Origin(wC) connecting va and vb, such that

eφ /∈ MA(pL
va,vb

). We call this path a patch of wC and denote
it by patch(wC). If for a given wC , the edges aL and bL have
a common end–node vL in GL

sub then patch(wC) = vL.
For every vertex wC ∈ pC

uC ,vC , find patch(wC). If wC=uC

then patch(uC) will connect the logical vertex u with an end–
node of the first logical edge in pC

uC ,vC , instead of connecting
two end–nodes. The same holds for wC=vC .
To summarize, in step (i) we have found the path pC

uC ,vC

in the contracted subgraph GC
sub. Next, in step (ii), we have

constructed a set of patches for each vertex of this path. Now
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uC

wC

yC

vC

uC∗
vC∗

wC∗

GC GC
later

GC
sub↓A

Origin(uC)

Origin(wC)

Origin(yC), Origin(vC)

⊂ Origin(uC
∗ )

⊂ Origin(wC
∗ )

⊂ Origin(vC
∗ )

A = {cL}

aL aLbL bLcL

a) b)

Fig. 8. Illustration of the proof of Theorem 2. (a) The original subgraph
GC

sub and a path pC
uC,vC that avoids eφ in its mapping. (b) The subgraph

GC
sub contracted on the set A = {cL} of logical edges; the resulting subgraph

is denoted by GC
sub↓A. The path pC

uC∗ ,vC∗
originates from pC

uC,vC , hence it

also avoids eφ in its mapping.

we combine steps (i) and (ii) to obtain the full path pL
u,v:

pL
u,v = pC

uC ,vC ∪
{ ⋃

wC∈pC
uc,vc

patch(wC)
}

. (4)

The logical path pL
u,v connects the vertices u and v and has

been constructed in such a way, that

eφ /∈ MB(pC
uC ,vC ) (5)

eφ /∈ MA(patch(wC)) for every wC ∈pC
uC ,vC . (6)

Since MA ∪ MB = MA∪B and A ∩ B = ∅, we can rewrite
(5) and (6) as

eφ /∈ MA∪B(pC
uC ,vC ) (7)

eφ /∈ MA∪B(patch(wC)) for every wC ∈pC
uC ,vC . (8)

Combining (4), (7) and (8) yields finally that eφ /∈
MA∪B(pC

u,v), which proves the claim. �
Proof of Theorem 2 [Please refer to Fig. 8]

Take any single physical link eφ ∈ Eφ and two vertices
uC∗ , vC∗ ∈ GC

sub ↓ A. According to Definition 7 we have to
show that there exists a path pC

uC∗ ,vC∗
in GC

sub ↓ A such that

eφ /∈ MB(pC
uC∗ ,vC∗

).
First, find in GC

sub two vertices uC , vC ∈ V C
sub, such that

Origin(uC) ⊆ Origin(uC
∗ ), and (9)

Origin(vC) ⊆ Origin(vC
∗ ). (10)

Note that since GC
sub↓A is created by contracting some edges in

GC
sub, vertices uC and vC always exist (they are not necessarily

unique). Since the pair
[
GC

sub, MB

]
is survivable, there exists

a path pC
uC ,vC in GC

sub such that eφ /∈ MB(pC
uC ,vC ). Define

a sequence of logical edges pC∗ by contracting in pC
uC ,vC all

edges that exist also in A, i.e.,

pC
∗ = pC

uC ,vC ↓ (A ∩ pC
uC ,vC ). (11)

Since pC
uC ,vC is a path in GC

sub, and since the contraction
an edge merges its two end-nodes and thus preserves its
continuity, pC

∗ is a path in GC
sub↓A. Moreover, relations (9,10)

imply that the path pC∗ connects uC∗ and vC∗ in GC
sub ↓ A.

Finally, eφ /∈ MB(pC
uC ,vC ) and (11) yields that eφ /∈ MB(pC

∗ ).
Therefore pC∗ is the path pC

uC∗ ,vC∗
that we are searching for. �

Proof of Theorem 3:
⇐ We know that the pair

[
GL, MA

]
is piecewise survivable.

Suppose that there exists a mapping M surv
EL\A, such that the

pair
[
GL↓A, M surv

EL\A
]

is survivable. Then, by Theorem 1, the
pair

[
Origin(GL↓A), MA∪ M surv

EL\A
]

=
[
GL, MA∪M surv

EL\A
]

is
also survivable. So the mapping M surv

EL = MA ∪ M surv
EL\A is a

survivable mapping of GL on Gφ.
⇒ Assume that a survivable mapping of GL on Gφ exists,
call it M surv

EL . Now, by taking GC
sub := GL and MB :=

M surv
EL , Theorem 2 yields that

[
GL↓A, M surv

EL

]
is survivable.

Consequently, the pair
[
GL↓A, M surv

EL\A
]

is also survivable. �
Proof of Theorem 4: [By induction]

INITIALIZATION:
Initially GC = GL. Therefore the origin of any vertex vC ∈
V C is a single node in GL, and it cannot be disconnected.
Hence for every vC ∈ V C , the pair

[
Origin(vC), MA

]
is

survivable and consequently the pair
[
GL, MA

]
is piecewise

survivable.
INDUCTION:
Assume that after some iteration the pair

[
GL, MA

]
is piece-

wise survivable. We have to prove that after the next iteration
of the algorithm, the updated mapping M̂A will still form a
piecewise survivable pair

[
GL, M̂A

]
.

One iteration of the SMART algorithm consists of Steps 2, 3
and 4, which we recall here:
2. Find GC

sub = (V C
sub, B) and MB, such that the pair[

GC
sub, MB

]
is survivable.

3. M̂A := MA ∪ MB

4. ĜC := GC ↓ B
(For clarity we indicated the updated MA and GC by a hat:
‘̂’)
The updated contracted topology ĜC = (V̂ C , ÊC) was cre-
ated from GC by replacing GC

sub = (V C
sub, B) by a single node,

which we call v̂C
sub; the remaining nodes stayed unchanged. So

V̂ C = {v̂C
sub} ∪ V C\V C

sub. Take any v̂C ∈ V̂ C ; we have two
possibilities:
(i) v̂C = v̂C

sub: Since GC
sub = (V C

sub, B) was contracted into
v̂C
sub, their origins coincide: Origin(GC

sub) = Origin(v̂C
sub).

Since M̂A = MA ∪ MB, the pair
[
Origin(v̂C

sub), M̂A

]
=[

Origin(GC
sub), MA ∪ MB

]
is survivable by Theorem 1.

(ii) v̂C �= v̂C
sub: In this case v̂C ∈ V C \V C

sub, so v̂C = vC .
By piecewise survivability of the pair

[
GL, MA

]
, the pair[

Origin(vC = v̂C), MA

]
is survivable. Since M̂A = MA ∪

MB , the pair
[
Origin(v̂C), M̂A

]
is survivable as well.

Combining (i) and (ii), we have proven that for every v̂C ∈
V̂ C , the pair

[
Origin(v̂C), M̂A

]
is survivable. So, by Defini-

tion 6, the pair
[
GL, M̂A

]
is piecewise survivable. �

Proof of Corollary 1:
⇒ We have to show that if there is only one vertex in GC

then
[
GL, MA

]
is survivable.

We have two observations: (i) By Theorem 4, the pair[
GL, MA

]
is piecewise survivable. This means that for every

vertex vC ∈ GC the pair
[
Origin(vC), MA

]
is survivable.

(ii) There is only one vertex in GC (i.e., GC = {vC}), and
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vC
∗

GC
1 = GL↓A GC

2 = GL↓B

GL

Origin(vC
∗ )

Origin(vC∗ )↓B

eL
∗

eL
∗

Fig. 9. Illustration of proof of Theorem 5. We start with an edge eL∗
that is in GC

2 , but not in GC
1 . Next, we choose a vertex vC∗ ∈ GC

1 such
that eL∗ ∈ Origin(vC∗ ). In the topology GC

2 , Origin(vC∗ ) is contracted
to Origin(vC∗ ) ↓ B that contains at least eL∗ . This nonempty subgraph
Origin(vC∗ ) ↓B can be mapped in a survivable way using the mapping
MA, which leads to contradiction.

therefore Origin(vC) = GL. Combining (i) and (ii), we have
that

[
GL, MA

]
is survivable.

⇐ We have to show that if the contracted topology GC has
more than one node then a survivable mapping of GL on Gφ

does not exist.
By Theorem 4, the pair

[
GL, MA

]
is piecewise survivable.

Since the algorithm has terminated before converging to a
single node (i.e., in Step 2), there exists no pair

[
GC

sub, MB

]
that is survivable. In particular, if we take GC

sub = GC = GL↓
A, there exists no pair

[
GL↓A, M∗

]
that is survivable. Now,

by Theorem 3 there exists no survivable mapping of GL on
Gφ. �

Proof of Theorem 5 [By contradiction, Please refer to Fig. 9]
Let us assume that two different runs of SMART converge
to two different contracted topologies GC

1 = GL ↓ A and
GC

2 = GL↓B, and the mappings MA and MB, respectively.
The SMART algorithm terminated in Step 2, which implies
that no subgraph GC

sub1 of GC
1 can be mapped in a survivable

way; similarly, no subgraph GC
sub2 of GC

2 can be mapped in a
survivable way. Assume, without loss of generality, that there
exists an edge eL

∗ such that eL
∗ ∈ GC

2 and eL
∗ /∈ GC

1 . (If such
an edge does not exist, an edge satisfying a converse condition
must exist, because GC

1 �= GC
2 .) Since eL

∗ /∈ GC
1 , there exists

vC∗ ∈ GC
1 such that eL∗ ∈ Origin(vC∗ ). By Theorem 4, the

pair
[
GC

1 , MA

]
is piecewise survivable, which implies that[

Origin(vC
∗ ), MA

]
is survivable. Now, by Theorem 2, the

pair
[
Origin(vC∗ )↓B, MA

]
is also survivable. By construction

the subgraph Origin(vC
∗ ) ↓ B contains at least the edge

eL
∗ . Therefore, there exists a non-empty subgraph GC

sub =
Origin(vC∗ )↓B of GC

2 that can be mapped in a survivable
way (using the mapping MA), which is impossible because
no subgraph GC

sub2 of GC
2 can be mapped in a survivable way.

�
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