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Introduction 
Diffusion MRI tractography has proved to be a very powerful tool to study brain anatomical connectivity. However, researchers haven’t paid much attention to the 
confidence one can attribute to a tractography solution. It is nonetheless essential to know whether a reconstructed tract results from the diffusion signal itself or from 
some random effect or noise. In this study, we introduce a way to estimate the contribution of noise in the tract construction by comparing the density of every gray 
matter to gray matter connection to a set of equivalent connections generated by a random process. This method provides for every connection a confidence level (p-
value). We note that the latter varies greatly from connection to connection, while some connections exhibit a strong confidence others can hardly be discriminated from 
noise. The factors and the reasons of this variability are discussed and we further propose a method to filter out the connections likely to be the result of noise. As a first 
test case, we apply this method to the connectivity of the human visual system.  
Material and Methods 
The MR diffusion images of a human brain are obtained on a healthy volunteer 
with an Achieva 3T Philips scanner, following a classical DSI scheme [1] using 
257 different encoding gradients (acquisition time 18 minutes). We use a 
diffusion weighted single shot EPI sequence with TR/TE/∆/δ = 
3000/100/47.6/35 ms and b-max = 12000 mm2/s to acquire 32 slices of a 128 x 
128 matrix with a spatial resolution of 2 x 2 x 3 mm3. In every brain voxel, the 
obtained 3D diffusion pdf is converted into an orientation distribution function, 
which is reduced into a set of direction vectors corresponding to the local 
maxima of the diffusion pdf. Both white and gray matter (WM and GM) are 
identified using a T1w based segmentation algorithm. The interface between 
WM and GM is partitioned into small, compact and equally sized regions of 
interest (ROIs) using a partitioning heuristic. DSI tractography is performed in 
WM using an algorithm especially designed for DSI data [2]. Then, we create 
the graph of brain connectivity [3]. Every ROI becomes a node in the graph, 
and an edge is constructed between two nodes if there is at least one fiber whose 
end-points lie in the corresponding ROIs. The edge weight is defined as 
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random reshuffling of the pdfs inside the WM of the original brain creating that 
way a tractography space by all means equal to the original dataset but with 
random orientations. For each of these datasets, DSI tractography is performed 
and the corresponding graph of brain connectivity is constructed using the ROIs 
computed with the original brain. Finally, a p-value is attributed to each edge, 
resulting from a sign test comparing its weight to the corresponding edge 
weights obtained with the reshuffled brains.   
Results 
Fig. A shows the distribution of the connection distance, defined as the shortest 
path through white matter between the origin and destination point of each 
connection. Original and random connections are represented respectively in 
green and cyan, while red stands for the remaining connections after the 
suppression of those likely to be the result of noise with a p-value > 0.05. In 
Fig. B, a part of the visual system white matter connectivity has been mapped, 
top (1, 3) and zoomed posterior (2, 4) views. The left part correspond to the 
results obtained after filtering out connections presenting a low confidence 
level, while the right part represents the whole set of connections. We can see 
the well known areas left and right V1 (gray and blue), V2 (orange), V3 (cyan), 
V5 (red) and the thalamus (magenta) [4]. Three long range connections are 
plotted: the optic radiation linking the thalamus to V1 (blue), V1 homotopic 
callosal projections (yellow) and V2–V5 (green), as well as the short 
connections V1–V2 (red) and V2–V3 (white).  
Discussion 
The distribution of the connection distance (Fig. A) shows that there are more short tracts in the random dataset compared to the original brain dataset. On the other 
hand, the number of connections of a given distance decreases faster with increasing distance in the random dataset than in the original brain dataset. Actually, long 
range connections are almost inexistent in the random dataset. This phenomenon can be easily understood by the observation that in a random dataset the probability of 
finding a path of coherently aligned directions of maximal diffusion is small. Actually the longer the path is, the less likely is its realization by chance, and this 
probability decreases quickly with the path length. Therefore, among all the short connections generated by the tractography algorithm in the original brain dataset, 
many are likely to be the result of noise only, which makes it difficult to differentiate the “real” connections. The level of confidence we have computed for every 
connection helps us to distinguish between connections in which we strongly believe, typically long distance connections, and connections that we are not sure to be 
able to distinguish from noise, typically short connections. We can threshold the connectivity matrix with a given confidence level in order to study and represent only 
the reliable tracts. This method, applied on the human visual system (Fig. B), gives the expected result. Indeed, we see no difference between the filtered and original 
version for long range connections, such as thalamus–V1, V1 homotopic and V2–V5, while a large proportion of short fibers, such as V1–V2 or V2–V3, are suppressed.  
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